H. Feng, Jonathon T. Giffin, Yong Huang, S. Jha, Wenke Lee, B. Miller
{"title":"入侵检测静态分析中灵敏度的形式化","authors":"H. Feng, Jonathon T. Giffin, Yong Huang, S. Jha, Wenke Lee, B. Miller","doi":"10.1109/SECPRI.2004.1301324","DOIUrl":null,"url":null,"abstract":"A key function of a host-based intrusion detection system is to monitor program execution. Models constructed using static analysis have the highly desirable feature that they do not produce false alarms; however, they may still miss attacks. Prior work has shown a trade-off between efficiency and precision. In particular, the more accurate models based upon pushdown automata (PDA) are very inefficient to operate due to non-determinism in stack activity. In this paper, we present techniques for determinizing PDA models. We first provide a formal analysis framework of PDA models and introduce the concepts of determinism and stack-determinism. We then present the VP-Static model, which achieves determinism by extracting information about stack activity of the program, and the Dyck model, which achieves stack-determinism by transforming the program and inserting code to expose program state. Our results show that in run-time monitoring, our models slow execution of our test programs by 1% to 135%. This shows that reasonable efficiency needs not be sacrificed for model precision. We also compare the two models and discover that deterministic PDA are more efficient, although stack-deterministic PDA require less memory.","PeriodicalId":447471,"journal":{"name":"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"184","resultStr":"{\"title\":\"Formalizing sensitivity in static analysis for intrusion detection\",\"authors\":\"H. Feng, Jonathon T. Giffin, Yong Huang, S. Jha, Wenke Lee, B. Miller\",\"doi\":\"10.1109/SECPRI.2004.1301324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key function of a host-based intrusion detection system is to monitor program execution. Models constructed using static analysis have the highly desirable feature that they do not produce false alarms; however, they may still miss attacks. Prior work has shown a trade-off between efficiency and precision. In particular, the more accurate models based upon pushdown automata (PDA) are very inefficient to operate due to non-determinism in stack activity. In this paper, we present techniques for determinizing PDA models. We first provide a formal analysis framework of PDA models and introduce the concepts of determinism and stack-determinism. We then present the VP-Static model, which achieves determinism by extracting information about stack activity of the program, and the Dyck model, which achieves stack-determinism by transforming the program and inserting code to expose program state. Our results show that in run-time monitoring, our models slow execution of our test programs by 1% to 135%. This shows that reasonable efficiency needs not be sacrificed for model precision. We also compare the two models and discover that deterministic PDA are more efficient, although stack-deterministic PDA require less memory.\",\"PeriodicalId\":447471,\"journal\":{\"name\":\"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"184\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECPRI.2004.1301324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECPRI.2004.1301324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formalizing sensitivity in static analysis for intrusion detection
A key function of a host-based intrusion detection system is to monitor program execution. Models constructed using static analysis have the highly desirable feature that they do not produce false alarms; however, they may still miss attacks. Prior work has shown a trade-off between efficiency and precision. In particular, the more accurate models based upon pushdown automata (PDA) are very inefficient to operate due to non-determinism in stack activity. In this paper, we present techniques for determinizing PDA models. We first provide a formal analysis framework of PDA models and introduce the concepts of determinism and stack-determinism. We then present the VP-Static model, which achieves determinism by extracting information about stack activity of the program, and the Dyck model, which achieves stack-determinism by transforming the program and inserting code to expose program state. Our results show that in run-time monitoring, our models slow execution of our test programs by 1% to 135%. This shows that reasonable efficiency needs not be sacrificed for model precision. We also compare the two models and discover that deterministic PDA are more efficient, although stack-deterministic PDA require less memory.