基于EMG的基于经验模式分解时间序列和深度学习的手势分类

Deniz Hande Kisa, Mehmet Akif Ozdemir, Onan Guren, A. Akan
{"title":"基于EMG的基于经验模式分解时间序列和深度学习的手势分类","authors":"Deniz Hande Kisa, Mehmet Akif Ozdemir, Onan Guren, A. Akan","doi":"10.1109/TIPTEKNO50054.2020.9299282","DOIUrl":null,"url":null,"abstract":"Computer systems working with artificial intelligence can recognize movements and gestures to be used for many purposes. In order to perform recognition, the electrical activity of the muscles can be utilized which is represented by electromyography (EMG) and EMG is not a stationary biological signal. EMG based movement recognition systems have an important place in distinct areas like in human-computer interactions, virtual reality, prosthesis, and hand exoskeletons. In this study, a new approach based on deep learning (DL) and Empirical Mode Decomposition (EMD) is proposed to improve the accuracy rate for recognition of hand movements in its application areas. Firstly, 4-channel surface EMG (sEMG) signals were measured while simulating 7 different hand gestures, which are extension, flexion, ulnar deviation, radial deviation, punch, open hand, and rest, from 30 subjects. After that, noiseless signals were procured utilizing filters as a result of preprocessing. Then, pre-processed signals were subjected to segmentation. Thereafter, the EMD process was applied to each segmented signal and Intrinsic Mode Functions (IMFs) were obtained. The IMFs time-series which are some kind of screen images of the first 3 IMFs have been recorded. For classification, IMFs images have given as inputs and have trained to the 101layer Convolution Neural Network (CNN) based on Residual Networks (ResNet) architecture, which is a DL model.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"EMG based Hand Gesture Classification using Empirical Mode Decomposition Time-Series and Deep Learning\",\"authors\":\"Deniz Hande Kisa, Mehmet Akif Ozdemir, Onan Guren, A. Akan\",\"doi\":\"10.1109/TIPTEKNO50054.2020.9299282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer systems working with artificial intelligence can recognize movements and gestures to be used for many purposes. In order to perform recognition, the electrical activity of the muscles can be utilized which is represented by electromyography (EMG) and EMG is not a stationary biological signal. EMG based movement recognition systems have an important place in distinct areas like in human-computer interactions, virtual reality, prosthesis, and hand exoskeletons. In this study, a new approach based on deep learning (DL) and Empirical Mode Decomposition (EMD) is proposed to improve the accuracy rate for recognition of hand movements in its application areas. Firstly, 4-channel surface EMG (sEMG) signals were measured while simulating 7 different hand gestures, which are extension, flexion, ulnar deviation, radial deviation, punch, open hand, and rest, from 30 subjects. After that, noiseless signals were procured utilizing filters as a result of preprocessing. Then, pre-processed signals were subjected to segmentation. Thereafter, the EMD process was applied to each segmented signal and Intrinsic Mode Functions (IMFs) were obtained. The IMFs time-series which are some kind of screen images of the first 3 IMFs have been recorded. For classification, IMFs images have given as inputs and have trained to the 101layer Convolution Neural Network (CNN) based on Residual Networks (ResNet) architecture, which is a DL model.\",\"PeriodicalId\":426945,\"journal\":{\"name\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO50054.2020.9299282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

与人工智能一起工作的计算机系统可以识别用于许多目的的动作和手势。为了进行识别,可以利用肌电图(EMG)来表示肌肉的电活动,而EMG不是固定的生物信号。基于肌电图的运动识别系统在人机交互、虚拟现实、假肢和手外骨骼等不同领域占有重要地位。本研究提出了一种基于深度学习(DL)和经验模态分解(EMD)的手部运动识别新方法,以提高其应用领域手部运动识别的准确率。首先,测量了30名受试者在模拟伸、屈、尺偏、桡偏、打拳、摊手和休息7种不同手势时的4通道表面肌电信号。然后,利用滤波器进行预处理,得到无噪声信号。然后,对预处理后的信号进行分割。然后,对每个分段信号进行EMD处理,得到内禀模态函数(imf)。国际货币基金组织的时间序列是前3个国际货币基金组织的某种屏幕图像。对于分类,IMFs图像作为输入,并训练到基于残差网络(ResNet)架构的101层卷积神经网络(CNN),这是一种深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMG based Hand Gesture Classification using Empirical Mode Decomposition Time-Series and Deep Learning
Computer systems working with artificial intelligence can recognize movements and gestures to be used for many purposes. In order to perform recognition, the electrical activity of the muscles can be utilized which is represented by electromyography (EMG) and EMG is not a stationary biological signal. EMG based movement recognition systems have an important place in distinct areas like in human-computer interactions, virtual reality, prosthesis, and hand exoskeletons. In this study, a new approach based on deep learning (DL) and Empirical Mode Decomposition (EMD) is proposed to improve the accuracy rate for recognition of hand movements in its application areas. Firstly, 4-channel surface EMG (sEMG) signals were measured while simulating 7 different hand gestures, which are extension, flexion, ulnar deviation, radial deviation, punch, open hand, and rest, from 30 subjects. After that, noiseless signals were procured utilizing filters as a result of preprocessing. Then, pre-processed signals were subjected to segmentation. Thereafter, the EMD process was applied to each segmented signal and Intrinsic Mode Functions (IMFs) were obtained. The IMFs time-series which are some kind of screen images of the first 3 IMFs have been recorded. For classification, IMFs images have given as inputs and have trained to the 101layer Convolution Neural Network (CNN) based on Residual Networks (ResNet) architecture, which is a DL model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1