面向自然语言编程:从口语话语中学习新功能

Sebastian Weigelt, Vanessa Steurer, Tobias Hey, W. Tichy
{"title":"面向自然语言编程:从口语话语中学习新功能","authors":"Sebastian Weigelt, Vanessa Steurer, Tobias Hey, W. Tichy","doi":"10.1142/S1793351X20400097","DOIUrl":null,"url":null,"abstract":"Systems with conversational interfaces are rather popular nowadays. However, their full potential is not yet exploited. For the time being, users are restricted to calling predefined functions. Soon, users will expect to customize systems to their needs and create own functions using nothing but spoken instructions. Thus, future systems must understand how laypersons teach new functionality to intelligent systems. The understanding of natural language teaching sequences is a first step toward comprehensive end-user programming in natural language. We propose to analyze the semantics of spoken teaching sequences with a hierarchical classification approach. First, we classify whether an utterance constitutes an effort to teach a new function or not. Afterward, a second classifier locates the distinct semantic parts of teaching efforts: declaration of a new function, specification of intermediate steps, and superfluous information. For both tasks we implement a broad range of machine learning techniques: classical approaches, such as Naïve Bayes, and neural network configurations of various types and architectures, such as bidirectional LSTMs. Additionally, we introduce two heuristic-based adaptations that are tailored to the task of understanding teaching sequences. As data basis we use 3168 descriptions gathered in a user study. For the first task convolutional neural networks obtain the best results (accuracy: 96.6%); bidirectional LSTMs excel in the second (accuracy: 98.8%). The adaptations improve the first-level classification considerably (plus 2.2% points).","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"16 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Programming in Natural Language: Learning New Functions from Spoken Utterances\",\"authors\":\"Sebastian Weigelt, Vanessa Steurer, Tobias Hey, W. Tichy\",\"doi\":\"10.1142/S1793351X20400097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems with conversational interfaces are rather popular nowadays. However, their full potential is not yet exploited. For the time being, users are restricted to calling predefined functions. Soon, users will expect to customize systems to their needs and create own functions using nothing but spoken instructions. Thus, future systems must understand how laypersons teach new functionality to intelligent systems. The understanding of natural language teaching sequences is a first step toward comprehensive end-user programming in natural language. We propose to analyze the semantics of spoken teaching sequences with a hierarchical classification approach. First, we classify whether an utterance constitutes an effort to teach a new function or not. Afterward, a second classifier locates the distinct semantic parts of teaching efforts: declaration of a new function, specification of intermediate steps, and superfluous information. For both tasks we implement a broad range of machine learning techniques: classical approaches, such as Naïve Bayes, and neural network configurations of various types and architectures, such as bidirectional LSTMs. Additionally, we introduce two heuristic-based adaptations that are tailored to the task of understanding teaching sequences. As data basis we use 3168 descriptions gathered in a user study. For the first task convolutional neural networks obtain the best results (accuracy: 96.6%); bidirectional LSTMs excel in the second (accuracy: 98.8%). The adaptations improve the first-level classification considerably (plus 2.2% points).\",\"PeriodicalId\":217956,\"journal\":{\"name\":\"Int. J. Semantic Comput.\",\"volume\":\"16 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Semantic Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793351X20400097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X20400097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有会话接口的系统现在相当流行。然而,它们的全部潜力尚未得到开发。目前,用户只能调用预定义的函数。很快,用户将期望根据自己的需求定制系统,只使用语音指令就能创建自己的功能。因此,未来的系统必须了解外行人如何向智能系统传授新功能。对自然语言教学序列的理解是实现全面的最终用户自然语言编程的第一步。我们提出用层次分类的方法来分析口语教学序列的语义。首先,我们对话语是否构成教授新功能的努力进行分类。然后,第二个分类器定位教学努力的不同语义部分:新功能的声明、中间步骤的说明和多余的信息。对于这两个任务,我们实现了广泛的机器学习技术:经典方法,如Naïve贝叶斯,以及各种类型和架构的神经网络配置,如双向lstm。此外,我们还介绍了两种基于启发式的适应,它们是针对理解教学序列的任务量身定制的。我们使用在用户研究中收集的3168个描述作为数据基础。对于第一个任务,卷积神经网络获得了最好的结果(准确率:96.6%);双向lstm在第二方面表现突出(准确率为98.8%)。这些调整大大提高了一级分类(增加2.2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Programming in Natural Language: Learning New Functions from Spoken Utterances
Systems with conversational interfaces are rather popular nowadays. However, their full potential is not yet exploited. For the time being, users are restricted to calling predefined functions. Soon, users will expect to customize systems to their needs and create own functions using nothing but spoken instructions. Thus, future systems must understand how laypersons teach new functionality to intelligent systems. The understanding of natural language teaching sequences is a first step toward comprehensive end-user programming in natural language. We propose to analyze the semantics of spoken teaching sequences with a hierarchical classification approach. First, we classify whether an utterance constitutes an effort to teach a new function or not. Afterward, a second classifier locates the distinct semantic parts of teaching efforts: declaration of a new function, specification of intermediate steps, and superfluous information. For both tasks we implement a broad range of machine learning techniques: classical approaches, such as Naïve Bayes, and neural network configurations of various types and architectures, such as bidirectional LSTMs. Additionally, we introduce two heuristic-based adaptations that are tailored to the task of understanding teaching sequences. As data basis we use 3168 descriptions gathered in a user study. For the first task convolutional neural networks obtain the best results (accuracy: 96.6%); bidirectional LSTMs excel in the second (accuracy: 98.8%). The adaptations improve the first-level classification considerably (plus 2.2% points).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1