RT-DFI:优化实时系统的数据流完整性

Nicolas Bellec, Guillaume Hiet, Simon Rokicki, F. Tronel, I. Puaut
{"title":"RT-DFI:优化实时系统的数据流完整性","authors":"Nicolas Bellec, Guillaume Hiet, Simon Rokicki, F. Tronel, I. Puaut","doi":"10.4230/LIPIcs.ECRTS.2022.18","DOIUrl":null,"url":null,"abstract":"The emergence of Real-Time Systems with increased connections to their environment has led to a greater demand in security for these systems. Memory corruption attacks, which modify the memory to trigger unexpected executions, are a significant threat against applications written in low-level languages. Data-Flow Integrity (DFI) is a protection that verifies that only a trusted source has written any loaded data. The overhead of such a security mechanism remains a major issue that limits its adoption. This article presents RT-DFI, a new approach that optimizes Data-Flow Integrity to reduce its overhead on the Worst-Case Execution Time. We model the number and order of the checks and use an Integer Linear Programming solver to optimize the protection on the Worst-Case Execution Path. Our approach protects the program against many memory-corruption attacks, including Return-Oriented Programming and Data-Only attacks. Moreover, our experimental results show that our optimization reduces the overhead by 7% on average compared to a state-of-the-art implementation.","PeriodicalId":191379,"journal":{"name":"Euromicro Conference on Real-Time Systems","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems\",\"authors\":\"Nicolas Bellec, Guillaume Hiet, Simon Rokicki, F. Tronel, I. Puaut\",\"doi\":\"10.4230/LIPIcs.ECRTS.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of Real-Time Systems with increased connections to their environment has led to a greater demand in security for these systems. Memory corruption attacks, which modify the memory to trigger unexpected executions, are a significant threat against applications written in low-level languages. Data-Flow Integrity (DFI) is a protection that verifies that only a trusted source has written any loaded data. The overhead of such a security mechanism remains a major issue that limits its adoption. This article presents RT-DFI, a new approach that optimizes Data-Flow Integrity to reduce its overhead on the Worst-Case Execution Time. We model the number and order of the checks and use an Integer Linear Programming solver to optimize the protection on the Worst-Case Execution Path. Our approach protects the program against many memory-corruption attacks, including Return-Oriented Programming and Data-Only attacks. Moreover, our experimental results show that our optimization reduces the overhead by 7% on average compared to a state-of-the-art implementation.\",\"PeriodicalId\":191379,\"journal\":{\"name\":\"Euromicro Conference on Real-Time Systems\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ECRTS.2022.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ECRTS.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着实时系统与环境连接的增加,对这些系统的安全性提出了更高的要求。内存损坏攻击是对用低级语言编写的应用程序的重大威胁,它修改内存以触发意外的执行。数据流完整性(data - flow Integrity, DFI)是一种保护,它验证只有受信任的源写入了任何加载的数据。这种安全机制的开销仍然是限制其采用的主要问题。本文介绍了RT-DFI,一种优化数据流完整性以减少最坏情况执行时间开销的新方法。我们对检查的数量和顺序进行建模,并使用整数线性规划求解器来优化最坏情况下执行路径上的保护。我们的方法保护程序免受许多内存损坏攻击,包括面向返回的编程和仅数据攻击。此外,我们的实验结果表明,与最先进的实现相比,我们的优化平均减少了7%的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems
The emergence of Real-Time Systems with increased connections to their environment has led to a greater demand in security for these systems. Memory corruption attacks, which modify the memory to trigger unexpected executions, are a significant threat against applications written in low-level languages. Data-Flow Integrity (DFI) is a protection that verifies that only a trusted source has written any loaded data. The overhead of such a security mechanism remains a major issue that limits its adoption. This article presents RT-DFI, a new approach that optimizes Data-Flow Integrity to reduce its overhead on the Worst-Case Execution Time. We model the number and order of the checks and use an Integer Linear Programming solver to optimize the protection on the Worst-Case Execution Path. Our approach protects the program against many memory-corruption attacks, including Return-Oriented Programming and Data-Only attacks. Moreover, our experimental results show that our optimization reduces the overhead by 7% on average compared to a state-of-the-art implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1