{"title":"广义Hermite约简、创造性伸缩与d -有限函数的定积分","authors":"A. Bostan, F. Chyzak, Pierre Lairez, B. Salvy","doi":"10.1145/3208976.3208992","DOIUrl":null,"url":null,"abstract":"Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given rational function as a sum of a function with simple poles and the derivative of another rational function. We extend Hermite reduction to arbitrary linear differential operators instead of the pure derivative, and develop efficient algorithms for this reduction. We then apply the generalized Hermite reduction to the computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative telescoping.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Generalized Hermite Reduction, Creative Telescoping and Definite Integration of D-Finite Functions\",\"authors\":\"A. Bostan, F. Chyzak, Pierre Lairez, B. Salvy\",\"doi\":\"10.1145/3208976.3208992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given rational function as a sum of a function with simple poles and the derivative of another rational function. We extend Hermite reduction to arbitrary linear differential operators instead of the pure derivative, and develop efficient algorithms for this reduction. We then apply the generalized Hermite reduction to the computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative telescoping.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3208992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized Hermite Reduction, Creative Telescoping and Definite Integration of D-Finite Functions
Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given rational function as a sum of a function with simple poles and the derivative of another rational function. We extend Hermite reduction to arbitrary linear differential operators instead of the pure derivative, and develop efficient algorithms for this reduction. We then apply the generalized Hermite reduction to the computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative telescoping.