隐马尔可夫模型的Tsallis相对熵率

Z. Nikooravesh
{"title":"隐马尔可夫模型的Tsallis相对熵率","authors":"Z. Nikooravesh","doi":"10.29252/JSRI.15.1.83","DOIUrl":null,"url":null,"abstract":"In this paper we study the Tsallis relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the Tsallis relative entropy between two finite subsequences of above mentioned chains with the help of the definition of Tsallis relative entropy between two random variables then we define the Tsallis relative entropy rate between these stochastic processes. Finally, we calculate Tsallis relative entropy rate for some hidden Markov models.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Tsallis Relative Entropy Rate of Hidden Markov Models\",\"authors\":\"Z. Nikooravesh\",\"doi\":\"10.29252/JSRI.15.1.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the Tsallis relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the Tsallis relative entropy between two finite subsequences of above mentioned chains with the help of the definition of Tsallis relative entropy between two random variables then we define the Tsallis relative entropy rate between these stochastic processes. Finally, we calculate Tsallis relative entropy rate for some hidden Markov models.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/JSRI.15.1.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JSRI.15.1.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过观察输入为有限状态空间齐次平稳马尔可夫链的离散随机信道的输出,研究了齐次马尔可夫链和隐马尔可夫链之间的Tsallis相对熵率。为此,我们借助两个随机变量之间的Tsallis相对熵的定义,得到了上述链的两个有限子序列之间的Tsallis相对熵,然后定义了这些随机过程之间的Tsallis相对熵率。最后,我们计算了一些隐马尔可夫模型的Tsallis相对熵率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Tsallis Relative Entropy Rate of Hidden Markov Models
In this paper we study the Tsallis relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the Tsallis relative entropy between two finite subsequences of above mentioned chains with the help of the definition of Tsallis relative entropy between two random variables then we define the Tsallis relative entropy rate between these stochastic processes. Finally, we calculate Tsallis relative entropy rate for some hidden Markov models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Goodness of Fit Tests based on Information Criterion for Randomly Censored Data Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses Best Linear Predictors in a Stationary Second Order Autoregressive process by means of near and far observations A Note on the Identifiability of General Bayesian Gaussian Models Simulated Synthetic Population Projection Using an Extended Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1