基于负载调度的docker容器使用优化

M. SureshKumar, P. Rajesh
{"title":"基于负载调度的docker容器使用优化","authors":"M. SureshKumar, P. Rajesh","doi":"10.1109/ICCCT2.2017.7972269","DOIUrl":null,"url":null,"abstract":"In this project we introduce an energy-aware processing model used for balancing the load of docker container and job scaling using docker(1). The approach used is to create an energy optimal regime within which the containers operate. An important strategy for energy reduction is concentrating the load on the containers. When the load increases, then by api call a new container can be spawned which can the allocated with jobs to process. The container can be created automatically based upon threshold conditions. This ensures that the rest of the container is not over-loaded with jobs. When the load decreases that container can be killed to save energy. The Energy-Aware scaling algorithm is used which ensures that the largest possible number of containers operate within their respective operational domain.","PeriodicalId":445567,"journal":{"name":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimizing the docker container usage based on load scheduling\",\"authors\":\"M. SureshKumar, P. Rajesh\",\"doi\":\"10.1109/ICCCT2.2017.7972269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this project we introduce an energy-aware processing model used for balancing the load of docker container and job scaling using docker(1). The approach used is to create an energy optimal regime within which the containers operate. An important strategy for energy reduction is concentrating the load on the containers. When the load increases, then by api call a new container can be spawned which can the allocated with jobs to process. The container can be created automatically based upon threshold conditions. This ensures that the rest of the container is not over-loaded with jobs. When the load decreases that container can be killed to save energy. The Energy-Aware scaling algorithm is used which ensures that the largest possible number of containers operate within their respective operational domain.\",\"PeriodicalId\":445567,\"journal\":{\"name\":\"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2017.7972269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2017.7972269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在这个项目中,我们介绍了一个能量感知的处理模型,用于平衡docker容器的负载和使用docker(1)的作业扩展。所使用的方法是创建一个能源的最佳制度,其中集装箱操作。减少能源的一个重要策略是将负荷集中在集装箱上。当负载增加时,通过api调用可以生成一个新的容器,该容器可以分配要处理的作业。可以根据阈值条件自动创建容器。这确保了容器的其余部分不会被作业过载。当负载减少时,集装箱可以被杀死以节省能源。使用Energy-Aware缩放算法,确保尽可能多的容器在各自的操作域内运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing the docker container usage based on load scheduling
In this project we introduce an energy-aware processing model used for balancing the load of docker container and job scaling using docker(1). The approach used is to create an energy optimal regime within which the containers operate. An important strategy for energy reduction is concentrating the load on the containers. When the load increases, then by api call a new container can be spawned which can the allocated with jobs to process. The container can be created automatically based upon threshold conditions. This ensures that the rest of the container is not over-loaded with jobs. When the load decreases that container can be killed to save energy. The Energy-Aware scaling algorithm is used which ensures that the largest possible number of containers operate within their respective operational domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart waste management using Internet-of-Things (IoT) HOT GLASS - human face, object and textual recognition for visually challenged Preserving data and key privacy in Data Aggregation for Wireless Sensor Networks FPGA implementation of artificial Neural Network for forest fire detection in wireless Sensor Network Rival Check Cross Correlator for locating strategic defense base using supervised learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1