藏汉神经机器翻译的领域自适应

Maoxian Zhou, Jia Secha, Rangjia Cai
{"title":"藏汉神经机器翻译的领域自适应","authors":"Maoxian Zhou, Jia Secha, Rangjia Cai","doi":"10.1145/3446132.3446404","DOIUrl":null,"url":null,"abstract":"The meaning of the same word or sentence is likely to change in different semantic contexts, which challenges general-purpose translation system to maintain stable performance across different domains. Therefore, domain adaptation is an essential researching topic in Neural Machine Translation practice. In order to efficiently train translation models for different domains, in this work we take the Tibetan-Chinese general translation model as the parent model, and obtain two domain-specific Tibetan-Chinese translation models with small-scale in-domain data. The empirical results indicate that the method provides a positive approach for domain adaptation in low-resource scenarios, resulting in better bleu metrics as well as faster training speed over our general baseline models.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Domain Adaptation for Tibetan-Chinese Neural Machine Translation\",\"authors\":\"Maoxian Zhou, Jia Secha, Rangjia Cai\",\"doi\":\"10.1145/3446132.3446404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The meaning of the same word or sentence is likely to change in different semantic contexts, which challenges general-purpose translation system to maintain stable performance across different domains. Therefore, domain adaptation is an essential researching topic in Neural Machine Translation practice. In order to efficiently train translation models for different domains, in this work we take the Tibetan-Chinese general translation model as the parent model, and obtain two domain-specific Tibetan-Chinese translation models with small-scale in-domain data. The empirical results indicate that the method provides a positive approach for domain adaptation in low-resource scenarios, resulting in better bleu metrics as well as faster training speed over our general baseline models.\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在不同的语义语境中,同一个词或句子的意义可能会发生变化,这给通用翻译系统在不同领域保持稳定的性能带来了挑战。因此,领域自适应是神经网络机器翻译实践中的一个重要研究课题。为了有效地训练不同领域的翻译模型,本工作以藏汉通用翻译模型为父模型,获得了两个具有小尺度域内数据的特定领域的藏汉翻译模型。实证结果表明,该方法为低资源场景下的域适应提供了积极的途径,从而获得了更好的bleu指标,并且比我们的一般基线模型更快的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain Adaptation for Tibetan-Chinese Neural Machine Translation
The meaning of the same word or sentence is likely to change in different semantic contexts, which challenges general-purpose translation system to maintain stable performance across different domains. Therefore, domain adaptation is an essential researching topic in Neural Machine Translation practice. In order to efficiently train translation models for different domains, in this work we take the Tibetan-Chinese general translation model as the parent model, and obtain two domain-specific Tibetan-Chinese translation models with small-scale in-domain data. The empirical results indicate that the method provides a positive approach for domain adaptation in low-resource scenarios, resulting in better bleu metrics as well as faster training speed over our general baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lane Detection Combining Details and Integrity: an Advanced Method for Lane Detection The Cat's Eye Effect Target Recognition Method Based on deep convolutional neural network Leveraging Different Context for Response Generation through Topic-guided Multi-head Attention Siamese Multiplicative LSTM for Semantic Text Similarity Multi-constrained Vehicle Routing Problem Solution based on Adaptive Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1