Sajal Dash, Mohammad Alaul Haque Monil, Junqi Yin, R. Anandakrishnan, Feiyi Wang
{"title":"分布简单形嵌套for- loop以识别致癌基因组合","authors":"Sajal Dash, Mohammad Alaul Haque Monil, Junqi Yin, R. Anandakrishnan, Feiyi Wang","doi":"10.1109/IPDPS54959.2023.00101","DOIUrl":null,"url":null,"abstract":"Cancer is a leading cause of death in the US, and it results from a combination of two-nine genetic mutations. Identifying five-hit combinations responsible for several cancer types is computationally intractable even with the fastest super-computers in the USA. Iterating through nested loops required by the process presents a simplex-shaped workload with irregular memory access patterns. Distributing this workload efficiently across thousands of GPUs offers a challenge in dividing simplex-shaped (triangular/tetrahedral) workload into similar shapes with equal volume. Irregular memory access patterns create imbalanced compute utilization across nodes. We developed a generalized solution for distributing a simplex-shaped workload by partially coalescing the nested for-loops, minimizing the memory access overhead by efficiently utilizing limited shared memory, a dynamic scheduler, and loop tiling. For 4-hit combinations, we achieved a 90% − 100% strong scaling efficiency for up to 3594 V100 GPUs on the Summit supercomputer. Finally, we designed and implemented a distributed algorithm to identify 5-hit combinations for four different cancer types, and the identified combinations can differentiate between cancer and normal samples with 86.59−88.79% precision and 84.42 − 90.91% recall. We also demonstrated the robustness of our solution by porting the code to another leadership class computing platform Crusher, a testbed for the fastest supercomputer Frontier. On Crusher, we achieved 98% strong scaling efficiency on 50 nodes (400 AMD MI250X GCDs) and demonstrated the computational readiness of Frontier for scientific applications.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributing Simplex-Shaped Nested for-Loops to Identify Carcinogenic Gene Combinations\",\"authors\":\"Sajal Dash, Mohammad Alaul Haque Monil, Junqi Yin, R. Anandakrishnan, Feiyi Wang\",\"doi\":\"10.1109/IPDPS54959.2023.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is a leading cause of death in the US, and it results from a combination of two-nine genetic mutations. Identifying five-hit combinations responsible for several cancer types is computationally intractable even with the fastest super-computers in the USA. Iterating through nested loops required by the process presents a simplex-shaped workload with irregular memory access patterns. Distributing this workload efficiently across thousands of GPUs offers a challenge in dividing simplex-shaped (triangular/tetrahedral) workload into similar shapes with equal volume. Irregular memory access patterns create imbalanced compute utilization across nodes. We developed a generalized solution for distributing a simplex-shaped workload by partially coalescing the nested for-loops, minimizing the memory access overhead by efficiently utilizing limited shared memory, a dynamic scheduler, and loop tiling. For 4-hit combinations, we achieved a 90% − 100% strong scaling efficiency for up to 3594 V100 GPUs on the Summit supercomputer. Finally, we designed and implemented a distributed algorithm to identify 5-hit combinations for four different cancer types, and the identified combinations can differentiate between cancer and normal samples with 86.59−88.79% precision and 84.42 − 90.91% recall. We also demonstrated the robustness of our solution by porting the code to another leadership class computing platform Crusher, a testbed for the fastest supercomputer Frontier. On Crusher, we achieved 98% strong scaling efficiency on 50 nodes (400 AMD MI250X GCDs) and demonstrated the computational readiness of Frontier for scientific applications.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributing Simplex-Shaped Nested for-Loops to Identify Carcinogenic Gene Combinations
Cancer is a leading cause of death in the US, and it results from a combination of two-nine genetic mutations. Identifying five-hit combinations responsible for several cancer types is computationally intractable even with the fastest super-computers in the USA. Iterating through nested loops required by the process presents a simplex-shaped workload with irregular memory access patterns. Distributing this workload efficiently across thousands of GPUs offers a challenge in dividing simplex-shaped (triangular/tetrahedral) workload into similar shapes with equal volume. Irregular memory access patterns create imbalanced compute utilization across nodes. We developed a generalized solution for distributing a simplex-shaped workload by partially coalescing the nested for-loops, minimizing the memory access overhead by efficiently utilizing limited shared memory, a dynamic scheduler, and loop tiling. For 4-hit combinations, we achieved a 90% − 100% strong scaling efficiency for up to 3594 V100 GPUs on the Summit supercomputer. Finally, we designed and implemented a distributed algorithm to identify 5-hit combinations for four different cancer types, and the identified combinations can differentiate between cancer and normal samples with 86.59−88.79% precision and 84.42 − 90.91% recall. We also demonstrated the robustness of our solution by porting the code to another leadership class computing platform Crusher, a testbed for the fastest supercomputer Frontier. On Crusher, we achieved 98% strong scaling efficiency on 50 nodes (400 AMD MI250X GCDs) and demonstrated the computational readiness of Frontier for scientific applications.