小学生学习障碍的分类模型

I. Awoyelu, I. Agboola
{"title":"小学生学习障碍的分类模型","authors":"I. Awoyelu, I. Agboola","doi":"10.51406/jnset.v17i1.1893","DOIUrl":null,"url":null,"abstract":"Learning disability is a general term that describes specific kinds of learning problems.  Although, Learning Disability cannot be cured medically, there exist several methods for detecting learning disabilities in a child. Existing methods of classification of learning disabilities in children are binary classification – either a child is normal or learning disabled. The focus of this paper is to extend the binary classification to multi-label classification of learning disabilities. This paper formulated and simulated a classification model for learning disabilities in primary school pupils. Information containing the symptoms of learning disabilities in pupils were elicited by administering five hundred (500) questionnaire to teachers of Primary One to Four pupils in fifteen government owned elementary schools within Ife Central Local Government Area, Ile-Ife of Osun State. The classification model was formulated using Principal Component Analysis, rule based system and back propagation algorithm. The formulated model was simulated using Waikatto Environment for Knowledge Analysis (WEKA) version 3.7.2. The performance of the model was evaluated using precision and accuracy. The classification model of primary one, primary two, primary three and primary four yielded precision rate of 95%, 91.18%, 93.10% and 93.60% respectively while the accuracy results were 95.00%, 91.18%, 93.10% and 93.60% respectively. The results obtained showed that the developed model proved to be accurate and precise in classifying pupils with learning disabilities in primary schools. The model can be adopted for the management of pupils with learning disabilities. \n ","PeriodicalId":389500,"journal":{"name":"Journal of Natural Sciences Engineering and Technology","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLASSIFICATION MODEL FOR LEARNING DISABILITIES IN ELEMENTARY SCHOOL PUPILS\",\"authors\":\"I. Awoyelu, I. Agboola\",\"doi\":\"10.51406/jnset.v17i1.1893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning disability is a general term that describes specific kinds of learning problems.  Although, Learning Disability cannot be cured medically, there exist several methods for detecting learning disabilities in a child. Existing methods of classification of learning disabilities in children are binary classification – either a child is normal or learning disabled. The focus of this paper is to extend the binary classification to multi-label classification of learning disabilities. This paper formulated and simulated a classification model for learning disabilities in primary school pupils. Information containing the symptoms of learning disabilities in pupils were elicited by administering five hundred (500) questionnaire to teachers of Primary One to Four pupils in fifteen government owned elementary schools within Ife Central Local Government Area, Ile-Ife of Osun State. The classification model was formulated using Principal Component Analysis, rule based system and back propagation algorithm. The formulated model was simulated using Waikatto Environment for Knowledge Analysis (WEKA) version 3.7.2. The performance of the model was evaluated using precision and accuracy. The classification model of primary one, primary two, primary three and primary four yielded precision rate of 95%, 91.18%, 93.10% and 93.60% respectively while the accuracy results were 95.00%, 91.18%, 93.10% and 93.60% respectively. The results obtained showed that the developed model proved to be accurate and precise in classifying pupils with learning disabilities in primary schools. The model can be adopted for the management of pupils with learning disabilities. \\n \",\"PeriodicalId\":389500,\"journal\":{\"name\":\"Journal of Natural Sciences Engineering and Technology\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Sciences Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51406/jnset.v17i1.1893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51406/jnset.v17i1.1893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学习障碍是一个描述特定类型学习问题的通用术语。虽然学习障碍不能从医学上治愈,但有几种方法可以检测儿童的学习障碍。现有的儿童学习障碍的分类方法是二元分类——要么是正常儿童,要么是学习障碍儿童。本文的重点是将二元分类扩展到学习障碍的多标签分类。本文建立并模拟了小学生学习障碍分类模型。包含学生学习障碍症状的信息是通过向奥松州伊莱-伊夫中央地方政府区内15所公立小学的一至四年级教师发放500份问卷得出的。采用主成分分析、基于规则的系统和反向传播算法建立了分类模型。采用Waikatto Environment for Knowledge Analysis (WEKA) 3.7.2版对模型进行仿真。通过精密度和准确度对模型的性能进行了评价。小学一、小学二、小学三、小学四分类模型的准确率分别为95%、91.18%、93.10%和93.60%,准确率分别为95.00%、91.18%、93.10%和93.60%。结果表明,所建立的模型对小学学习障碍学生的分类是准确和精确的。该模型可用于学习障碍学生的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CLASSIFICATION MODEL FOR LEARNING DISABILITIES IN ELEMENTARY SCHOOL PUPILS
Learning disability is a general term that describes specific kinds of learning problems.  Although, Learning Disability cannot be cured medically, there exist several methods for detecting learning disabilities in a child. Existing methods of classification of learning disabilities in children are binary classification – either a child is normal or learning disabled. The focus of this paper is to extend the binary classification to multi-label classification of learning disabilities. This paper formulated and simulated a classification model for learning disabilities in primary school pupils. Information containing the symptoms of learning disabilities in pupils were elicited by administering five hundred (500) questionnaire to teachers of Primary One to Four pupils in fifteen government owned elementary schools within Ife Central Local Government Area, Ile-Ife of Osun State. The classification model was formulated using Principal Component Analysis, rule based system and back propagation algorithm. The formulated model was simulated using Waikatto Environment for Knowledge Analysis (WEKA) version 3.7.2. The performance of the model was evaluated using precision and accuracy. The classification model of primary one, primary two, primary three and primary four yielded precision rate of 95%, 91.18%, 93.10% and 93.60% respectively while the accuracy results were 95.00%, 91.18%, 93.10% and 93.60% respectively. The results obtained showed that the developed model proved to be accurate and precise in classifying pupils with learning disabilities in primary schools. The model can be adopted for the management of pupils with learning disabilities.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
URBAN FLOOD IMPACTS, FLOOD WATER QUALITY AND RISK MAPPING OF OLODO AREA, IBADAN, NIGERIA GEO-ELECTRIC INVESTIGATION OF GROUNDWATER POTENTIAL IN LADERIN HOUSING ESTATE, ABEOKUTA, SOUTHWESTERN, NIGERIA PATHOMORPHOLOGICAL CHANGES AND BACTERIAL PATHOGENS ASSOCIATED WITH SWINE PNEUMONIAS IN SOUTHWEST NIGERIA PREDICTING SOCIAL NETWORK ADDICTION USING VARIANT SIGMOID TRANSFER FEED-FORWARD NEURAL NETWORKS (FNN-SNA) EFFECTS OF VARYING WATER-CEMENT RATIOS ON DIFFERENT GRADES OF CONCRETE USING LOCALLY MATERIALS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1