带反馈环的gmdh型神经网络及其在大空间空气污染模式识别中的应用

T. Kondo, A. S. Pandya
{"title":"带反馈环的gmdh型神经网络及其在大空间空气污染模式识别中的应用","authors":"T. Kondo, A. S. Pandya","doi":"10.1109/SICE.2000.889646","DOIUrl":null,"url":null,"abstract":"The GMDH (group method of data handling)-type neural networks with a feedback loop have been proposed in our early work. The architecture of these networks is generated by using the heuristic self-organization method that is the basic theory of the GMDH method. The number of hidden layers and the number of neurons in the hidden layers are determined so as to minimize the error criterion defined by Akaike's information criterion (AIC). Furthermore, the optimum neurons that can handle the complexity of the nonlinear system are selected from a variety of prototype functions, such as the sigmoid function, the radial basis function, the high order polynomial and the linear function. In this study, the GMDH-type neural networks with a feedback loop is applied to the identification of large-spatial air pollution patterns. The source-receptor matrix that represents a relationship between the multiple air pollution sources and the air pollution concentration at the multiple monitoring stations is accurately identified by using the GMDH-type neural networks with a feedback loop. The identification results of the GMDH-type neural networks are compared with those identified by other identification methods.","PeriodicalId":254956,"journal":{"name":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","volume":"483 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"GMDH-type neural networks with a feedback loop and their application to the identification of large-spatial air pollution patterns\",\"authors\":\"T. Kondo, A. S. Pandya\",\"doi\":\"10.1109/SICE.2000.889646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The GMDH (group method of data handling)-type neural networks with a feedback loop have been proposed in our early work. The architecture of these networks is generated by using the heuristic self-organization method that is the basic theory of the GMDH method. The number of hidden layers and the number of neurons in the hidden layers are determined so as to minimize the error criterion defined by Akaike's information criterion (AIC). Furthermore, the optimum neurons that can handle the complexity of the nonlinear system are selected from a variety of prototype functions, such as the sigmoid function, the radial basis function, the high order polynomial and the linear function. In this study, the GMDH-type neural networks with a feedback loop is applied to the identification of large-spatial air pollution patterns. The source-receptor matrix that represents a relationship between the multiple air pollution sources and the air pollution concentration at the multiple monitoring stations is accurately identified by using the GMDH-type neural networks with a feedback loop. The identification results of the GMDH-type neural networks are compared with those identified by other identification methods.\",\"PeriodicalId\":254956,\"journal\":{\"name\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"volume\":\"483 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2000.889646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2000.889646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在我们的早期工作中,已经提出了带有反馈回路的GMDH(数据处理的群体方法)型神经网络。这些网络的体系结构是利用启发式自组织方法生成的,这是GMDH方法的基本理论。确定隐藏层的数量和隐藏层中的神经元数量,使赤池信息准则(Akaike’s information criterion, AIC)定义的误差准则最小化。在此基础上,从sigmoid函数、径向基函数、高阶多项式和线性函数等多种原型函数中选择出能够处理复杂非线性系统的最优神经元。本研究将带反馈回路的gmdh型神经网络应用于大空间空气污染模式的识别。利用带反馈回路的gmdh型神经网络,准确识别了多个空气污染源与多个监测站空气污染浓度之间的关系的源受体矩阵。将gmdh型神经网络的辨识结果与其他辨识方法的辨识结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GMDH-type neural networks with a feedback loop and their application to the identification of large-spatial air pollution patterns
The GMDH (group method of data handling)-type neural networks with a feedback loop have been proposed in our early work. The architecture of these networks is generated by using the heuristic self-organization method that is the basic theory of the GMDH method. The number of hidden layers and the number of neurons in the hidden layers are determined so as to minimize the error criterion defined by Akaike's information criterion (AIC). Furthermore, the optimum neurons that can handle the complexity of the nonlinear system are selected from a variety of prototype functions, such as the sigmoid function, the radial basis function, the high order polynomial and the linear function. In this study, the GMDH-type neural networks with a feedback loop is applied to the identification of large-spatial air pollution patterns. The source-receptor matrix that represents a relationship between the multiple air pollution sources and the air pollution concentration at the multiple monitoring stations is accurately identified by using the GMDH-type neural networks with a feedback loop. The identification results of the GMDH-type neural networks are compared with those identified by other identification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tension control of wire suspended mechanism and application to bathroom cleaning robot Forgetting least squares estimation FIR filters without noise covariance information A study on distributed SMA-net robot control by coupled oscillator system A gatesize computing method in target tracking Attitude controller design for a launch vehicle with fuel-slosh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1