通用多源数据融合框架

Wei-Ming Liu, Chen Zhang, Bin Yu, Yitong Li
{"title":"通用多源数据融合框架","authors":"Wei-Ming Liu, Chen Zhang, Bin Yu, Yitong Li","doi":"10.1145/3318299.3318394","DOIUrl":null,"url":null,"abstract":"With the development of the Internet, the increase of information sources and speed of information release and transmission have led to a sharp increase in the amount of information. To enable users finding more accurate and reliable information in the large heterogeneous multi-source data, data fusion technology becomes more and more important. Data fusion technology structuralizes and integrates heterogeneous data from different sources which greatly improves the comprehensiveness, availability and extensibility of data. This paper proposes a general multi-source data fusion framework. The framework transforms multi-source structured data, semi-structured data and unstructured data into unified data format described by RDF (Resource Description Framework) standard, and then realizes information fusion through data fusion algorithm, to solve the heterogeneity and semantic conflict in multi-source data fusion under the big data environment.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"449 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A General Multi-Source Data Fusion Framework\",\"authors\":\"Wei-Ming Liu, Chen Zhang, Bin Yu, Yitong Li\",\"doi\":\"10.1145/3318299.3318394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of the Internet, the increase of information sources and speed of information release and transmission have led to a sharp increase in the amount of information. To enable users finding more accurate and reliable information in the large heterogeneous multi-source data, data fusion technology becomes more and more important. Data fusion technology structuralizes and integrates heterogeneous data from different sources which greatly improves the comprehensiveness, availability and extensibility of data. This paper proposes a general multi-source data fusion framework. The framework transforms multi-source structured data, semi-structured data and unstructured data into unified data format described by RDF (Resource Description Framework) standard, and then realizes information fusion through data fusion algorithm, to solve the heterogeneity and semantic conflict in multi-source data fusion under the big data environment.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"449 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着互联网的发展,信息来源的增加以及信息发布和传播速度的加快,导致了信息量的急剧增加。为了使用户能够在海量异构多源数据中找到更加准确可靠的信息,数据融合技术变得越来越重要。数据融合技术将来自不同来源的异构数据进行结构化和集成,极大地提高了数据的全面性、可用性和可扩展性。提出了一种通用的多源数据融合框架。该框架将多源结构化数据、半结构化数据和非结构化数据转换成统一的RDF(资源描述框架)标准描述的数据格式,然后通过数据融合算法实现信息融合,解决大数据环境下多源数据融合中的异构性和语义冲突问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A General Multi-Source Data Fusion Framework
With the development of the Internet, the increase of information sources and speed of information release and transmission have led to a sharp increase in the amount of information. To enable users finding more accurate and reliable information in the large heterogeneous multi-source data, data fusion technology becomes more and more important. Data fusion technology structuralizes and integrates heterogeneous data from different sources which greatly improves the comprehensiveness, availability and extensibility of data. This paper proposes a general multi-source data fusion framework. The framework transforms multi-source structured data, semi-structured data and unstructured data into unified data format described by RDF (Resource Description Framework) standard, and then realizes information fusion through data fusion algorithm, to solve the heterogeneity and semantic conflict in multi-source data fusion under the big data environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1