基于深度学习的手写体汉字笔划级异常检测方法

Tie-Qiang Wang, Cheng-Lin Liu
{"title":"基于深度学习的手写体汉字笔划级异常检测方法","authors":"Tie-Qiang Wang, Cheng-Lin Liu","doi":"10.1109/ICDM.2018.00176","DOIUrl":null,"url":null,"abstract":"Writing abnormality detection is very important in education applications, but has received little attention by the community. Considering that abnormally written strokes (writing error or largely distorted stroke) affect the decision confidence of classifier, we propose an approach named DeepAD to detect stroke-level abnormalities in handwritten Chinese characters by analyzing the decision process of deep neural network (DNN). Firstly, to minimize the effect of stroke width variation of handwritten characters, we propose a skeletonization method based on fully convolutional network (FCN) with cross detection. With a convolutional neural network (CNN) for character classification, we evaluate the role of each skeleton pixel by calculating its impact on the prediction of classifier, and detect abnormal strokes by connecting pixels of negative impact. For quantitative evaluation of performance, we build a template-free dataset named SA-CASIA-HW containing 3696 handwritten Chinese characters with various stroke-level abnormalities, and spanning 3000+ different classes written by 60 individual writers. We validate the usefulness of the proposed DeepAD with comparison to related methods.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DeepAD: A Deep Learning Based Approach to Stroke-Level Abnormality Detection in Handwritten Chinese Character Recognition\",\"authors\":\"Tie-Qiang Wang, Cheng-Lin Liu\",\"doi\":\"10.1109/ICDM.2018.00176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Writing abnormality detection is very important in education applications, but has received little attention by the community. Considering that abnormally written strokes (writing error or largely distorted stroke) affect the decision confidence of classifier, we propose an approach named DeepAD to detect stroke-level abnormalities in handwritten Chinese characters by analyzing the decision process of deep neural network (DNN). Firstly, to minimize the effect of stroke width variation of handwritten characters, we propose a skeletonization method based on fully convolutional network (FCN) with cross detection. With a convolutional neural network (CNN) for character classification, we evaluate the role of each skeleton pixel by calculating its impact on the prediction of classifier, and detect abnormal strokes by connecting pixels of negative impact. For quantitative evaluation of performance, we build a template-free dataset named SA-CASIA-HW containing 3696 handwritten Chinese characters with various stroke-level abnormalities, and spanning 3000+ different classes written by 60 individual writers. We validate the usefulness of the proposed DeepAD with comparison to related methods.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

书写异常检测在教育应用中非常重要,但却很少受到社会的重视。考虑到异常书写笔划(书写错误或笔划严重扭曲)会影响分类器的决策置信度,我们提出了一种名为DeepAD的方法,通过分析深度神经网络(DNN)的决策过程来检测手写汉字的笔划级别异常。首先,为了最小化手写字符笔画宽度变化的影响,我们提出了一种基于交叉检测的全卷积网络(FCN)骨架化方法。使用卷积神经网络(CNN)进行字符分类,通过计算每个骨架像素对分类器预测的影响来评估其作用,并通过连接负面影响像素来检测异常笔画。为了定量评估性能,我们建立了一个名为SA-CASIA-HW的无模板数据集,该数据集包含3696个不同笔划水平异常的手写汉字,跨越60位作者所写的3000多个不同类别。我们通过与相关方法的比较验证了所提出的DeepAD的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepAD: A Deep Learning Based Approach to Stroke-Level Abnormality Detection in Handwritten Chinese Character Recognition
Writing abnormality detection is very important in education applications, but has received little attention by the community. Considering that abnormally written strokes (writing error or largely distorted stroke) affect the decision confidence of classifier, we propose an approach named DeepAD to detect stroke-level abnormalities in handwritten Chinese characters by analyzing the decision process of deep neural network (DNN). Firstly, to minimize the effect of stroke width variation of handwritten characters, we propose a skeletonization method based on fully convolutional network (FCN) with cross detection. With a convolutional neural network (CNN) for character classification, we evaluate the role of each skeleton pixel by calculating its impact on the prediction of classifier, and detect abnormal strokes by connecting pixels of negative impact. For quantitative evaluation of performance, we build a template-free dataset named SA-CASIA-HW containing 3696 handwritten Chinese characters with various stroke-level abnormalities, and spanning 3000+ different classes written by 60 individual writers. We validate the usefulness of the proposed DeepAD with comparison to related methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1