胡杨地:人口与环境综合数据

S. Ruggles, T. Kugler, Catherine A. Fitch, D. V. Riper
{"title":"胡杨地:人口与环境综合数据","authors":"S. Ruggles, T. Kugler, Catherine A. Fitch, D. V. Riper","doi":"10.1109/ICDMW.2015.204","DOIUrl":null,"url":null,"abstract":"Terra Populus, part of National Science Foundation's DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. A large number of high-quality environmental and population datasets are available, but they are widely dispersed, have incompatible or inadequate metadata, and have incompatible geographic identifiers. The new Terra Populus infrastructure enables researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Terra Populus: Integrated Data on Population and Environment\",\"authors\":\"S. Ruggles, T. Kugler, Catherine A. Fitch, D. V. Riper\",\"doi\":\"10.1109/ICDMW.2015.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terra Populus, part of National Science Foundation's DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. A large number of high-quality environmental and population datasets are available, but they are widely dispersed, have incompatible or inadequate metadata, and have incompatible geographic identifiers. The new Terra Populus infrastructure enables researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Terra Populus是美国国家科学基金会数据网计划的一部分,正在开发组织和技术基础设施,以整合、保存和传播描述人口和环境随时间变化的数据。有大量高质量的环境和人口数据集,但它们分布广泛,元数据不兼容或不充分,地理标识符也不兼容。新的Terra Populus基础设施使研究人员能够识别和合并来自不同来源的数据,以研究人类行为与自然世界之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terra Populus: Integrated Data on Population and Environment
Terra Populus, part of National Science Foundation's DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. A large number of high-quality environmental and population datasets are available, but they are widely dispersed, have incompatible or inadequate metadata, and have incompatible geographic identifiers. The new Terra Populus infrastructure enables researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1