参考质谱用于降低固体燃料在环境有机气溶胶中燃烧源分配的不确定度

Chunshui Lin, D. Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, S. Hellebust, J. Wenger, C. O’Dowd, J. Ovadnevaitė
{"title":"参考质谱用于降低固体燃料在环境有机气溶胶中燃烧源分配的不确定度","authors":"Chunshui Lin, D. Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, S. Hellebust, J. Wenger, C. O’Dowd, J. Ovadnevaitė","doi":"10.5194/amt-2021-174","DOIUrl":null,"url":null,"abstract":"Abstract. Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by an aerosol chemical speciation monitor (ACSM). However. source apportionment of solid fuel burning emissions can be complicated by the use of different fuels, stoves and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves have been compared using an ACSM. The same samples of biomass briquettes and smokeless coal were burnt in a conventional and Ecodesign stove, while different batches of wood, peat, and smoky coal were also burnt in the conventional stove and the OA mass spectra compared to those previously obtained using a boiler stove. The results shows that although certain ions (e.g., m/z 60) remain important markers for solid fuel burning, the peak intensities obtained at specific m/z values were not constant with variations ranging from <5% to >100 %. Using the OA mass spectra of peat, wood and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits in ME-2 analysis (the limits approach), the respective contributions of these fuels to ambient sub-micron aerosols during a winter period in Dublin were evaluated and compared with the conventional a value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2–7 %, while relatively large uncertainties (8–29 %) were found for the a value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs 41 %) and wood (14 % vs 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burned in different stoves in real-world applications.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the use of reference mass spectra for reducing uncertainty in source apportionment of solid fuel burning in ambient organic aerosol\",\"authors\":\"Chunshui Lin, D. Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, S. Hellebust, J. Wenger, C. O’Dowd, J. Ovadnevaitė\",\"doi\":\"10.5194/amt-2021-174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by an aerosol chemical speciation monitor (ACSM). However. source apportionment of solid fuel burning emissions can be complicated by the use of different fuels, stoves and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves have been compared using an ACSM. The same samples of biomass briquettes and smokeless coal were burnt in a conventional and Ecodesign stove, while different batches of wood, peat, and smoky coal were also burnt in the conventional stove and the OA mass spectra compared to those previously obtained using a boiler stove. The results shows that although certain ions (e.g., m/z 60) remain important markers for solid fuel burning, the peak intensities obtained at specific m/z values were not constant with variations ranging from <5% to >100 %. Using the OA mass spectra of peat, wood and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits in ME-2 analysis (the limits approach), the respective contributions of these fuels to ambient sub-micron aerosols during a winter period in Dublin were evaluated and compared with the conventional a value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2–7 %, while relatively large uncertainties (8–29 %) were found for the a value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs 41 %) and wood (14 % vs 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burned in different stoves in real-world applications.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-2021-174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/amt-2021-174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要参考质谱通常用于促进由气溶胶化学形态监测仪(ACSM)测量的环境有机气溶胶(OA)的源分配。然而。由于使用不同的燃料、炉具和燃烧条件,固体燃料燃烧排放的源分配可能会变得复杂。在这项研究中,使用ACSM比较了在几个炉子中燃烧一系列固体燃料产生的有机气溶胶质谱。在传统和Ecodesign炉子中燃烧相同的生物质压块和无烟煤样品,同时在传统炉子中燃烧不同批次的木材、泥炭和无烟煤,并与以前使用锅炉炉子获得的OA质谱进行比较。结果表明,虽然某些离子(如m/ z60)仍然是固体燃料燃烧的重要标志,但在特定m/z值下获得的峰值强度不是恒定的,变化范围从100%不等。利用泥炭、木材和煤的OA质谱作为锚定剖面,以及ME-2分析中各m/z值的上限/下限变化(极限方法),评估了都柏林冬季期间这些燃料对环境亚微米气溶胶的各自贡献,并与传统的a值方法进行了比较。极限法的ME-2溶液稳定,不确定度在2 - 7%范围内,而a值法的不确定度较大(8 - 29%)。尽管如此,这两种方法总体上显示出良好的一致性,在污染的夜晚,燃烧泥炭(39%对41%)和木材(14%对11%)占了环境有机气溶胶的大部分,尽管它们的使用很少。因此,这项研究解释了ME-2模拟中的源变率,并对环境有机气溶胶估算的主要因子贡献提供了更好的约束。这项研究的发现对公共卫生和政策制定者具有重大意义,因为在实际应用中,不同批次的固体燃料经常在不同的炉子中燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the use of reference mass spectra for reducing uncertainty in source apportionment of solid fuel burning in ambient organic aerosol
Abstract. Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by an aerosol chemical speciation monitor (ACSM). However. source apportionment of solid fuel burning emissions can be complicated by the use of different fuels, stoves and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves have been compared using an ACSM. The same samples of biomass briquettes and smokeless coal were burnt in a conventional and Ecodesign stove, while different batches of wood, peat, and smoky coal were also burnt in the conventional stove and the OA mass spectra compared to those previously obtained using a boiler stove. The results shows that although certain ions (e.g., m/z 60) remain important markers for solid fuel burning, the peak intensities obtained at specific m/z values were not constant with variations ranging from <5% to >100 %. Using the OA mass spectra of peat, wood and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits in ME-2 analysis (the limits approach), the respective contributions of these fuels to ambient sub-micron aerosols during a winter period in Dublin were evaluated and compared with the conventional a value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2–7 %, while relatively large uncertainties (8–29 %) were found for the a value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs 41 %) and wood (14 % vs 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burned in different stoves in real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6×6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data Fill dynamics and sample mixing in the AirCore  Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1