用于儿童哮喘研究和管理的可穿戴式和固定式护理点物联网空气污染传感器*

Quan Dong, Baichen Li, R. S. Downen, Nam Tran, Elizabeth Chorvinsky, D. Pillai, Mona E. Zaghloul, Zhenyu Li
{"title":"用于儿童哮喘研究和管理的可穿戴式和固定式护理点物联网空气污染传感器*","authors":"Quan Dong, Baichen Li, R. S. Downen, Nam Tran, Elizabeth Chorvinsky, D. Pillai, Mona E. Zaghloul, Zhenyu Li","doi":"10.1109/HI-POCT45284.2019.8962865","DOIUrl":null,"url":null,"abstract":"The lack of mechanistic understanding of pediatric asthma development is partly due the lack of objective measures of environmental exposure metrics correlated with physiological responses. Here we report cloud-based wearable and stationary IoT air pollution sensors which can measure an asthma patient’s exposure to ozone, NO2 and aldehydes in real-life settings. The wrist-watch shaped sensor can measure formaldehyde levels in air from 30ppb to 10ppm using fuel cell technology, and continuously operate over 7 days without recharging. The smart-speaker sized stationary sensor measures ozone and NO2 from 20ppb to 1000ppb in the air. The wearable sensor can wirelessly upload data to the stationary sensor or an Android smartphone via Bluetooth Low Energy (BLE). The stationary sensor or the smartphone functions as a gateway to a cloud-based informatics system which handles sensor data storage, management and analytics. Potential applications of these point-of-care IoT sensors include epidemiological studies of asthma development and exacerbations, personalized asthma management and environmental monitoring.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wearable and Stationary Point-of-Care IoT Air Pollution Sensors for Pediatric Asthma Research and Management*\",\"authors\":\"Quan Dong, Baichen Li, R. S. Downen, Nam Tran, Elizabeth Chorvinsky, D. Pillai, Mona E. Zaghloul, Zhenyu Li\",\"doi\":\"10.1109/HI-POCT45284.2019.8962865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of mechanistic understanding of pediatric asthma development is partly due the lack of objective measures of environmental exposure metrics correlated with physiological responses. Here we report cloud-based wearable and stationary IoT air pollution sensors which can measure an asthma patient’s exposure to ozone, NO2 and aldehydes in real-life settings. The wrist-watch shaped sensor can measure formaldehyde levels in air from 30ppb to 10ppm using fuel cell technology, and continuously operate over 7 days without recharging. The smart-speaker sized stationary sensor measures ozone and NO2 from 20ppb to 1000ppb in the air. The wearable sensor can wirelessly upload data to the stationary sensor or an Android smartphone via Bluetooth Low Energy (BLE). The stationary sensor or the smartphone functions as a gateway to a cloud-based informatics system which handles sensor data storage, management and analytics. Potential applications of these point-of-care IoT sensors include epidemiological studies of asthma development and exacerbations, personalized asthma management and environmental monitoring.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

缺乏对儿童哮喘发展机制的理解部分是由于缺乏与生理反应相关的环境暴露指标的客观测量。在这里,我们报告了基于云的可穿戴和固定式物联网空气污染传感器,它可以测量哮喘患者在现实生活中暴露于臭氧、二氧化氮和醛类物质的情况。这款腕表形状的传感器采用燃料电池技术,可以测量空气中的甲醛含量,范围从30ppb到10ppm,无需充电即可连续工作7天。智能扬声器大小的固定式传感器可以测量空气中的臭氧和二氧化氮,从20ppb到1000ppb。可穿戴传感器可以通过低功耗蓝牙(BLE)将数据无线上传到固定传感器或安卓智能手机。固定传感器或智能手机的功能是作为基于云的信息系统的网关,该系统处理传感器数据的存储、管理和分析。这些医疗点物联网传感器的潜在应用包括哮喘发展和恶化的流行病学研究、个性化哮喘管理和环境监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wearable and Stationary Point-of-Care IoT Air Pollution Sensors for Pediatric Asthma Research and Management*
The lack of mechanistic understanding of pediatric asthma development is partly due the lack of objective measures of environmental exposure metrics correlated with physiological responses. Here we report cloud-based wearable and stationary IoT air pollution sensors which can measure an asthma patient’s exposure to ozone, NO2 and aldehydes in real-life settings. The wrist-watch shaped sensor can measure formaldehyde levels in air from 30ppb to 10ppm using fuel cell technology, and continuously operate over 7 days without recharging. The smart-speaker sized stationary sensor measures ozone and NO2 from 20ppb to 1000ppb in the air. The wearable sensor can wirelessly upload data to the stationary sensor or an Android smartphone via Bluetooth Low Energy (BLE). The stationary sensor or the smartphone functions as a gateway to a cloud-based informatics system which handles sensor data storage, management and analytics. Potential applications of these point-of-care IoT sensors include epidemiological studies of asthma development and exacerbations, personalized asthma management and environmental monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Nanoscale Electrode for Biosensing A Motion Free Image Based TRF Reader for Quantitative Immunoassay Gaze-based video games for assessment of attention outside of the lab Conjugated Barcoded Particles for Multiplexed Biomarker Quantification with a Microfluidic Biochip Daily Locomotor Movement Recognition with a Smart Insole and a Pre-defined Route Map: Towards Early Motor Dysfunction Detection*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1