S. Muggiasca, A. Fontanella, F. Taruffi, H. Giberti, A. Facchinetti, M. Belloli, M. Bollati
{"title":"海上浮式风力机大型气动弹性模型:机械与机电一体化设计","authors":"S. Muggiasca, A. Fontanella, F. Taruffi, H. Giberti, A. Facchinetti, M. Belloli, M. Bollati","doi":"10.1115/iowtc2019-7537","DOIUrl":null,"url":null,"abstract":"\n This paper deals with the mechatronic design of a large-scale wind turbine model (outdoor scaled prototype) based on the DTU 10MW. This is going to be integrated in the model of a multi-purpose floating structure to be deployed at the Natural Ocean Engineering Laboratory (NOEL) in Reggio Calabria (Italy). The floating wind turbine model is the downscaling of the full-scale structure designed within the EU H2020 Blue Growth Farm project. The structural design of the scaled wind turbine is presented, starting from the aeroelastic and aerodynamic design carried out in a previous work.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Large Aeroelastic Model of a Floating Offshore Wind Turbine: Mechanical and Mechatronics Design\",\"authors\":\"S. Muggiasca, A. Fontanella, F. Taruffi, H. Giberti, A. Facchinetti, M. Belloli, M. Bollati\",\"doi\":\"10.1115/iowtc2019-7537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper deals with the mechatronic design of a large-scale wind turbine model (outdoor scaled prototype) based on the DTU 10MW. This is going to be integrated in the model of a multi-purpose floating structure to be deployed at the Natural Ocean Engineering Laboratory (NOEL) in Reggio Calabria (Italy). The floating wind turbine model is the downscaling of the full-scale structure designed within the EU H2020 Blue Growth Farm project. The structural design of the scaled wind turbine is presented, starting from the aeroelastic and aerodynamic design carried out in a previous work.\",\"PeriodicalId\":131294,\"journal\":{\"name\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iowtc2019-7537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Aeroelastic Model of a Floating Offshore Wind Turbine: Mechanical and Mechatronics Design
This paper deals with the mechatronic design of a large-scale wind turbine model (outdoor scaled prototype) based on the DTU 10MW. This is going to be integrated in the model of a multi-purpose floating structure to be deployed at the Natural Ocean Engineering Laboratory (NOEL) in Reggio Calabria (Italy). The floating wind turbine model is the downscaling of the full-scale structure designed within the EU H2020 Blue Growth Farm project. The structural design of the scaled wind turbine is presented, starting from the aeroelastic and aerodynamic design carried out in a previous work.