具有折扣奖励和预算约束的多模型优化

Jixuan Shi, Mei Chen
{"title":"具有折扣奖励和预算约束的多模型优化","authors":"Jixuan Shi, Mei Chen","doi":"10.1145/3208788.3208796","DOIUrl":null,"url":null,"abstract":"Multiple arm bandit algorithm is widely used in gaming, gambling, policy generation, and artificial intelligence projects and gets more attention recently. In this paper, we explore non-stationary reward MAB problem with limited query budget. An upper confidence bound (UCB) based algorithm for the discounted MAB budget finite problem, which uses reward-cost ratio instead of arm rewards in discount empirical average. In order to estimate the instantaneous expected reward-cost ratio, the DUCB-BF policy averages past rewards with a discount factor giving more weight to recent observations. Theoretical regret bound is established with proof to be over-performed than other MAB algorithms. A real application on maintenance recovery models refinement is explored. Results comparison on 4 different MAB algorithms and DUCB-BF algorithm yields lowest regret as expected.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-model optimization with discounted reward and budget constraint\",\"authors\":\"Jixuan Shi, Mei Chen\",\"doi\":\"10.1145/3208788.3208796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple arm bandit algorithm is widely used in gaming, gambling, policy generation, and artificial intelligence projects and gets more attention recently. In this paper, we explore non-stationary reward MAB problem with limited query budget. An upper confidence bound (UCB) based algorithm for the discounted MAB budget finite problem, which uses reward-cost ratio instead of arm rewards in discount empirical average. In order to estimate the instantaneous expected reward-cost ratio, the DUCB-BF policy averages past rewards with a discount factor giving more weight to recent observations. Theoretical regret bound is established with proof to be over-performed than other MAB algorithms. A real application on maintenance recovery models refinement is explored. Results comparison on 4 different MAB algorithms and DUCB-BF algorithm yields lowest regret as expected.\",\"PeriodicalId\":211585,\"journal\":{\"name\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208788.3208796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多臂强盗算法被广泛应用于游戏、赌博、政策生成、人工智能项目中,近年来受到越来越多的关注。本文研究了查询预算有限的非平稳奖励MAB问题。基于上置信度界(UCB)的折现MAB预算有限问题的算法,该算法在折现经验平均中使用奖励-成本比代替手臂奖励。为了估计瞬时期望的奖励成本比,DUCB-BF策略对过去的奖励进行平均,并对最近的观察给予更多的权重。建立了理论后悔界,并证明该算法优于其他MAB算法。探讨了维修恢复模型精化的实际应用。结果4种不同的MAB算法和DUCB-BF算法的比较得到了最低的遗憾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-model optimization with discounted reward and budget constraint
Multiple arm bandit algorithm is widely used in gaming, gambling, policy generation, and artificial intelligence projects and gets more attention recently. In this paper, we explore non-stationary reward MAB problem with limited query budget. An upper confidence bound (UCB) based algorithm for the discounted MAB budget finite problem, which uses reward-cost ratio instead of arm rewards in discount empirical average. In order to estimate the instantaneous expected reward-cost ratio, the DUCB-BF policy averages past rewards with a discount factor giving more weight to recent observations. Theoretical regret bound is established with proof to be over-performed than other MAB algorithms. A real application on maintenance recovery models refinement is explored. Results comparison on 4 different MAB algorithms and DUCB-BF algorithm yields lowest regret as expected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-point boundary value problems for fuzzy differential equations under generalized differentiability Background subtraction via online box constrained RPCA Bayesian analysis for multivariate skew-normal reproductive dispersion random effects models A diversity-based method for class-imbalanced cost-sensitive learning The Merrifield-Simmons index of two classes of lexicographic product graphs of corona graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1