人脸识别系统采用HMM-PSO进行特征选择

Mai Mohamed Mahmoud Farag, T. Elghazaly, H. Hefny
{"title":"人脸识别系统采用HMM-PSO进行特征选择","authors":"Mai Mohamed Mahmoud Farag, T. Elghazaly, H. Hefny","doi":"10.1109/ICENCO.2016.7856453","DOIUrl":null,"url":null,"abstract":"In this paper we apply particle swarm optimization (PSO) feature selection to enhance Hidden Markov Model (HMM) states and parameters for face recognition systems. Ideal Feature selection for face images based on the idea of collaborative behavior of bird flocking to reduce the feature size and hence recognition time complicity. The framework has been inspected on 400 face pictures of the Olivetti Research Laboratory face database. The experiments demonstrated an acknowledgment rate of 98.5%, using half of the images for training.","PeriodicalId":332360,"journal":{"name":"2016 12th International Computer Engineering Conference (ICENCO)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Face recognition system using HMM-PSO for feature selection\",\"authors\":\"Mai Mohamed Mahmoud Farag, T. Elghazaly, H. Hefny\",\"doi\":\"10.1109/ICENCO.2016.7856453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply particle swarm optimization (PSO) feature selection to enhance Hidden Markov Model (HMM) states and parameters for face recognition systems. Ideal Feature selection for face images based on the idea of collaborative behavior of bird flocking to reduce the feature size and hence recognition time complicity. The framework has been inspected on 400 face pictures of the Olivetti Research Laboratory face database. The experiments demonstrated an acknowledgment rate of 98.5%, using half of the images for training.\",\"PeriodicalId\":332360,\"journal\":{\"name\":\"2016 12th International Computer Engineering Conference (ICENCO)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Computer Engineering Conference (ICENCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICENCO.2016.7856453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Computer Engineering Conference (ICENCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENCO.2016.7856453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文将粒子群算法(PSO)应用于人脸识别系统的隐马尔可夫模型(HMM)状态和参数的增强。基于鸟群协同行为思想的人脸图像理想特征选择,以减小特征尺寸,从而降低识别时间复杂度。该框架已在Olivetti研究实验室人脸数据库的400张人脸图片上进行了检验。实验表明,使用一半的图像进行训练,识别率达到98.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face recognition system using HMM-PSO for feature selection
In this paper we apply particle swarm optimization (PSO) feature selection to enhance Hidden Markov Model (HMM) states and parameters for face recognition systems. Ideal Feature selection for face images based on the idea of collaborative behavior of bird flocking to reduce the feature size and hence recognition time complicity. The framework has been inspected on 400 face pictures of the Olivetti Research Laboratory face database. The experiments demonstrated an acknowledgment rate of 98.5%, using half of the images for training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New scheme for CSFB improvement in LTE A robust local data and membership information based FCM algorithm for noisy image segmentation Global distributed clustering technique for randomly deployed wireless sensor networks Grey wolf optimizer-based back-propagation neural network algorithm Loan portfolio optimization using Genetic Algorithm: A case of credit constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1