多阶段感知机会约束MPC及其在自动驾驶中的应用

Angelo D. Bonzanini, A. Mesbah, S. D. Cairano
{"title":"多阶段感知机会约束MPC及其在自动驾驶中的应用","authors":"Angelo D. Bonzanini, A. Mesbah, S. D. Cairano","doi":"10.23919/ACC53348.2022.9867264","DOIUrl":null,"url":null,"abstract":"Perception-aware Chance-constrained Model Predictive Control (PAC-MPC) accounts for the interdependence between perception and control for systems operating in uncertain environments. The environment is discovered by perception, which imposes chance constraints on system operation. PAC-MPC can handle a perception quality that depends on the system states and/or inputs, thus affecting uncertainty quantification in the chance constraints. In this paper, we extend PAC-MPC by introducing a scenario-based prediction for future measurements, so that the resulting multi-stage PAC-MPC does not require a conservative estimate of the measurement prediction error covariance. We demonstrate PAC-MPC for automated vehicle control when obstacles and road boundaries are uncertain and perceived by variable precision sensors subject to an overall sensing budget and when the scenarios are generated based on possible obstacle behaviors.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-stage Perception-aware Chance-constrained MPC with Applications to Automated Driving\",\"authors\":\"Angelo D. Bonzanini, A. Mesbah, S. D. Cairano\",\"doi\":\"10.23919/ACC53348.2022.9867264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perception-aware Chance-constrained Model Predictive Control (PAC-MPC) accounts for the interdependence between perception and control for systems operating in uncertain environments. The environment is discovered by perception, which imposes chance constraints on system operation. PAC-MPC can handle a perception quality that depends on the system states and/or inputs, thus affecting uncertainty quantification in the chance constraints. In this paper, we extend PAC-MPC by introducing a scenario-based prediction for future measurements, so that the resulting multi-stage PAC-MPC does not require a conservative estimate of the measurement prediction error covariance. We demonstrate PAC-MPC for automated vehicle control when obstacles and road boundaries are uncertain and perceived by variable precision sensors subject to an overall sensing budget and when the scenarios are generated based on possible obstacle behaviors.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

感知感知机会约束模型预测控制(PAC-MPC)解释了在不确定环境中运行的系统的感知和控制之间的相互依赖关系。环境是通过感知发现的,它对系统运行施加了机会约束。PAC-MPC可以处理依赖于系统状态和/或输入的感知质量,从而影响机会约束中的不确定性量化。在本文中,我们通过引入基于场景的未来测量预测来扩展PAC-MPC,从而得到的多阶段PAC-MPC不需要对测量预测误差协方差进行保守估计。我们演示了PAC-MPC在障碍物和道路边界不确定的情况下的自动车辆控制,并由受整体传感预算约束的可变精度传感器感知,以及基于可能的障碍物行为生成的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-stage Perception-aware Chance-constrained MPC with Applications to Automated Driving
Perception-aware Chance-constrained Model Predictive Control (PAC-MPC) accounts for the interdependence between perception and control for systems operating in uncertain environments. The environment is discovered by perception, which imposes chance constraints on system operation. PAC-MPC can handle a perception quality that depends on the system states and/or inputs, thus affecting uncertainty quantification in the chance constraints. In this paper, we extend PAC-MPC by introducing a scenario-based prediction for future measurements, so that the resulting multi-stage PAC-MPC does not require a conservative estimate of the measurement prediction error covariance. We demonstrate PAC-MPC for automated vehicle control when obstacles and road boundaries are uncertain and perceived by variable precision sensors subject to an overall sensing budget and when the scenarios are generated based on possible obstacle behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1