Remix:按需现场随机化

Yueh-Ting Chen, Zhi Wang, D. Whalley, Long Lu
{"title":"Remix:按需现场随机化","authors":"Yueh-Ting Chen, Zhi Wang, D. Whalley, Long Lu","doi":"10.1145/2857705.2857726","DOIUrl":null,"url":null,"abstract":"Code randomization is an effective defense against code reuse attacks. It scrambles program code to prevent attackers from locating useful functions or gadgets. The key to secure code randomization is achieving high entropy. A practical approach to boost entropy is on-demand live randomization that works on running processes. However, enabling live randomization is challenging in that it often requires manual efforts to solve ambiguity in identifying function pointers. In this paper, we propose Remix, an efficient and practical live randomization system for both user processes and kernel modules. Remix randomly shuffles basic blocks within their respective functions. By doing so, it avoids the complexity of migrating stale function pointers, and allows mixing randomized and non-randomized code to strike a balance between performance and security. Remix randomizes a running process in two steps: it first randomly reorders its basic blocks, and then comprehensively migrates live pointers to basic blocks. Our experiments show that Remix can significantly increase randomness with low performance overhead on both CPU and I/O intensive benchmarks and kernel modules, even at very short randomization intervals.","PeriodicalId":377412,"journal":{"name":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Remix: On-demand Live Randomization\",\"authors\":\"Yueh-Ting Chen, Zhi Wang, D. Whalley, Long Lu\",\"doi\":\"10.1145/2857705.2857726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code randomization is an effective defense against code reuse attacks. It scrambles program code to prevent attackers from locating useful functions or gadgets. The key to secure code randomization is achieving high entropy. A practical approach to boost entropy is on-demand live randomization that works on running processes. However, enabling live randomization is challenging in that it often requires manual efforts to solve ambiguity in identifying function pointers. In this paper, we propose Remix, an efficient and practical live randomization system for both user processes and kernel modules. Remix randomly shuffles basic blocks within their respective functions. By doing so, it avoids the complexity of migrating stale function pointers, and allows mixing randomized and non-randomized code to strike a balance between performance and security. Remix randomizes a running process in two steps: it first randomly reorders its basic blocks, and then comprehensively migrates live pointers to basic blocks. Our experiments show that Remix can significantly increase randomness with low performance overhead on both CPU and I/O intensive benchmarks and kernel modules, even at very short randomization intervals.\",\"PeriodicalId\":377412,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2857705.2857726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2857705.2857726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

代码随机化是抵御代码重用攻击的有效手段。它搅乱程序代码以防止攻击者定位有用的功能或小工具。安全代码随机化的关键是实现高熵。提高熵的一种实用方法是按需实时随机化,它适用于运行中的进程。然而,启用实时随机化是具有挑战性的,因为它通常需要人工努力来解决识别函数指针中的歧义。在本文中,我们提出了Remix,一个高效和实用的实时随机化系统,用于用户进程和内核模块。Remix在各自的功能中随机洗牌基本块。通过这样做,它避免了迁移过时函数指针的复杂性,并允许混合随机和非随机代码,以在性能和安全性之间取得平衡。Remix将运行中的进程随机化分为两步:首先随机重新排序其基本块,然后将活动指针全面迁移到基本块。我们的实验表明,即使在非常短的随机化间隔下,Remix也可以在CPU和I/O密集型基准测试和内核模块上以较低的性能开销显著增加随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remix: On-demand Live Randomization
Code randomization is an effective defense against code reuse attacks. It scrambles program code to prevent attackers from locating useful functions or gadgets. The key to secure code randomization is achieving high entropy. A practical approach to boost entropy is on-demand live randomization that works on running processes. However, enabling live randomization is challenging in that it often requires manual efforts to solve ambiguity in identifying function pointers. In this paper, we propose Remix, an efficient and practical live randomization system for both user processes and kernel modules. Remix randomly shuffles basic blocks within their respective functions. By doing so, it avoids the complexity of migrating stale function pointers, and allows mixing randomized and non-randomized code to strike a balance between performance and security. Remix randomizes a running process in two steps: it first randomly reorders its basic blocks, and then comprehensively migrates live pointers to basic blocks. Our experiments show that Remix can significantly increase randomness with low performance overhead on both CPU and I/O intensive benchmarks and kernel modules, even at very short randomization intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperability of Relationship- and Role-Based Access Control DIVERSITY Auditing Security Compliance of the Virtualized Infrastructure in the Cloud: Application to OpenStack Evaluating Analysis Tools for Android Apps: Status Quo and Robustness Against Obfuscation Decoding the Mystery of the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1