一种新的递归神经网络模糊均方聚类方法

K. E. Moutaouakil, A. Touhafi
{"title":"一种新的递归神经网络模糊均方聚类方法","authors":"K. E. Moutaouakil, A. Touhafi","doi":"10.1109/CloudTech49835.2020.9365873","DOIUrl":null,"url":null,"abstract":"Fuzzy mean square clustering is one of the simplest and most performant versions of the k-means non-hierarchical clustering methods. In this work, we extend and improve this method by a recurrent neural network, leading to a new clustering method called Recurrent Neural Network Fuzzy Mean Square. In this approach the fuzzy mean square error is modeled by a constrained non-linear optimization program. The latter is solved by a recurrent neural network in which an original energy function is defined. The energy function makes a compromise between the objective function and the constraints by using appropriate Lagrange relaxation scales. The Euler-Cauchy method is then used to calculate the centers and the membership functions. Simulation results on academic datasets show the effectiveness of the proposed method.","PeriodicalId":272860,"journal":{"name":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A New Recurrent Neural Network Fuzzy Mean Square Clustering Method\",\"authors\":\"K. E. Moutaouakil, A. Touhafi\",\"doi\":\"10.1109/CloudTech49835.2020.9365873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy mean square clustering is one of the simplest and most performant versions of the k-means non-hierarchical clustering methods. In this work, we extend and improve this method by a recurrent neural network, leading to a new clustering method called Recurrent Neural Network Fuzzy Mean Square. In this approach the fuzzy mean square error is modeled by a constrained non-linear optimization program. The latter is solved by a recurrent neural network in which an original energy function is defined. The energy function makes a compromise between the objective function and the constraints by using appropriate Lagrange relaxation scales. The Euler-Cauchy method is then used to calculate the centers and the membership functions. Simulation results on academic datasets show the effectiveness of the proposed method.\",\"PeriodicalId\":272860,\"journal\":{\"name\":\"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudTech49835.2020.9365873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudTech49835.2020.9365873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

模糊均方聚类是k均值非分层聚类方法中最简单、性能最好的一种。在这项工作中,我们通过递归神经网络扩展和改进了该方法,产生了一种新的聚类方法,称为递归神经网络模糊均方。该方法采用约束非线性优化程序对模糊均方误差进行建模。后者通过定义原始能量函数的递归神经网络求解。能量函数通过使用合适的拉格朗日松弛尺度,在目标函数和约束之间进行了折衷。然后用欧拉-柯西方法计算中心和隶属函数。在学术数据集上的仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Recurrent Neural Network Fuzzy Mean Square Clustering Method
Fuzzy mean square clustering is one of the simplest and most performant versions of the k-means non-hierarchical clustering methods. In this work, we extend and improve this method by a recurrent neural network, leading to a new clustering method called Recurrent Neural Network Fuzzy Mean Square. In this approach the fuzzy mean square error is modeled by a constrained non-linear optimization program. The latter is solved by a recurrent neural network in which an original energy function is defined. The energy function makes a compromise between the objective function and the constraints by using appropriate Lagrange relaxation scales. The Euler-Cauchy method is then used to calculate the centers and the membership functions. Simulation results on academic datasets show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CloudTech 2020 Copyright Page An IoT data logging instrument for monitoring and early efficiency loss detection at a photovoltaic generation plant A cloud-based foundational infrastructure for water management ecosystem Medical Image Registration via Similarity Measure based on Convolutional Neural Network Quality Approach to Analyze the Causes of Failures in MOOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1