水下环境模拟是否有助于自主系统的视觉任务?

Jiangtao Wang, Yang Zhou, Baihua Li, Q. Meng, Emanuele Rocco, Andrea Saiani
{"title":"水下环境模拟是否有助于自主系统的视觉任务?","authors":"Jiangtao Wang, Yang Zhou, Baihua Li, Q. Meng, Emanuele Rocco, Andrea Saiani","doi":"10.31256/UKRAS19.26","DOIUrl":null,"url":null,"abstract":"To simulate the underwater environment and test\nalgorithms for autonomous underwater vehicles, we developed\nan underwater simulation environment with the Unreal Engine 4\nto generate underwater visual data such as seagrass and\nlandscape. We then used such data from the Unreal environment\nto train and verify an underwater image segmentation model,\nwhich is an important technology to later achieve visual based\nnavigation. The simulation environment shows the potentials for\ndataset generalization and testing robot vision algorithms.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can underwater environment simulation contribute to vision tasks for autonomous systems?\",\"authors\":\"Jiangtao Wang, Yang Zhou, Baihua Li, Q. Meng, Emanuele Rocco, Andrea Saiani\",\"doi\":\"10.31256/UKRAS19.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To simulate the underwater environment and test\\nalgorithms for autonomous underwater vehicles, we developed\\nan underwater simulation environment with the Unreal Engine 4\\nto generate underwater visual data such as seagrass and\\nlandscape. We then used such data from the Unreal environment\\nto train and verify an underwater image segmentation model,\\nwhich is an important technology to later achieve visual based\\nnavigation. The simulation environment shows the potentials for\\ndataset generalization and testing robot vision algorithms.\",\"PeriodicalId\":424229,\"journal\":{\"name\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31256/UKRAS19.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/UKRAS19.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟水下环境和测试自主水下航行器的算法,我们利用虚幻引擎4开发了一个水下模拟环境,以生成海草和景观等水下视觉数据。然后,我们使用来自虚幻环境的这些数据来训练和验证水下图像分割模型,这是后来实现基于视觉的导航的重要技术。仿真环境显示了数据集泛化和测试机器人视觉算法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can underwater environment simulation contribute to vision tasks for autonomous systems?
To simulate the underwater environment and test algorithms for autonomous underwater vehicles, we developed an underwater simulation environment with the Unreal Engine 4 to generate underwater visual data such as seagrass and landscape. We then used such data from the Unreal environment to train and verify an underwater image segmentation model, which is an important technology to later achieve visual based navigation. The simulation environment shows the potentials for dataset generalization and testing robot vision algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Adaptive Framework for Robust Myoelectric Hand Movement Prediction Trajectory Creation Towards Fast Skill Deployment in Plug-and- Produce Assembly Systems: A Gaussian-Mixture Model Approach An Information Theoretic Approach to Path Planning for Frontier Exploration Establishing Continuous Communication through Dynamic Team Behaviour Switching Development of a Multi-robotic System for Exploration of Biomass Power Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1