{"title":"基于单元的有限弹性光滑有限元方法","authors":"A. Francis, S. Natarajan, Chan Lee, P. Budarapu","doi":"10.1080/15502287.2022.2030427","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we present a displacement based polygonal finite element method for compressible and nearly-incompressible elastic solids undergoing large deformations in two dimensions. This is achieved by projecting the dilatation strain onto the linear approximation space, within the framework of volume averaged nodal projection method. To reduce the numerical integration burden over polytopes, a linear strain smoothing technique is employed to compute the terms in the bilinear/linear form. The salient features of the proposed framework are: (a) does not require derivatives of shape functions and complex numerical integration scheme to compute the bilinear and linear form and (b) volumetric locking is alleviated by adopting the volume averaged nodal projection technique. The efficacy, convergence properties and accuracy of the proposed framework is demonstrated through four standard benchmark problems.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A cell-based smoothed finite element method for finite elasticity\",\"authors\":\"A. Francis, S. Natarajan, Chan Lee, P. Budarapu\",\"doi\":\"10.1080/15502287.2022.2030427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we present a displacement based polygonal finite element method for compressible and nearly-incompressible elastic solids undergoing large deformations in two dimensions. This is achieved by projecting the dilatation strain onto the linear approximation space, within the framework of volume averaged nodal projection method. To reduce the numerical integration burden over polytopes, a linear strain smoothing technique is employed to compute the terms in the bilinear/linear form. The salient features of the proposed framework are: (a) does not require derivatives of shape functions and complex numerical integration scheme to compute the bilinear and linear form and (b) volumetric locking is alleviated by adopting the volume averaged nodal projection technique. The efficacy, convergence properties and accuracy of the proposed framework is demonstrated through four standard benchmark problems.\",\"PeriodicalId\":315058,\"journal\":{\"name\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15502287.2022.2030427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2022.2030427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cell-based smoothed finite element method for finite elasticity
Abstract In this study, we present a displacement based polygonal finite element method for compressible and nearly-incompressible elastic solids undergoing large deformations in two dimensions. This is achieved by projecting the dilatation strain onto the linear approximation space, within the framework of volume averaged nodal projection method. To reduce the numerical integration burden over polytopes, a linear strain smoothing technique is employed to compute the terms in the bilinear/linear form. The salient features of the proposed framework are: (a) does not require derivatives of shape functions and complex numerical integration scheme to compute the bilinear and linear form and (b) volumetric locking is alleviated by adopting the volume averaged nodal projection technique. The efficacy, convergence properties and accuracy of the proposed framework is demonstrated through four standard benchmark problems.