S. Sharma, S. Kulkarni, A. Maksud, S. Wagh, N. Singh
{"title":"基于Kuramoto模型的多机电力系统暂态稳定评估与同步","authors":"S. Sharma, S. Kulkarni, A. Maksud, S. Wagh, N. Singh","doi":"10.1109/NAPS.2013.6666837","DOIUrl":null,"url":null,"abstract":"The crucial issue of loss of synchronization in post-disturbance conditions may lead to blackouts if corrective action is delayed. The complication increases due to large computation burden and time for wide-area network where thyristor-controlled series compensator (TCSC) is used as controller for transient stability enhancement. The trade-off in accuracy and speed in generating control law using linearized models becomes ineffective for changed operating scenarios. In addition, forming multi-machine linearized model becomes challenging when TCSC appears as non-separable element of a dense admittance matrix, which can be separated as a control variable in single-machine infinite-bus system. Overcoming the limitations of linearized controllers, the present paper verifies the Kuramoto mean-field condition using Kron reduction with non-trivial transfer conductances for unstable post-fault scenario. To regain synchronization effectively, necessary TCSC compensation has adjusted network parameters as proved by MATLAB simulations performed on 12-bus system, where real-time data is acquired by phasor measurement units.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transient stability assessment and synchronization of multimachine power system using Kuramoto model\",\"authors\":\"S. Sharma, S. Kulkarni, A. Maksud, S. Wagh, N. Singh\",\"doi\":\"10.1109/NAPS.2013.6666837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crucial issue of loss of synchronization in post-disturbance conditions may lead to blackouts if corrective action is delayed. The complication increases due to large computation burden and time for wide-area network where thyristor-controlled series compensator (TCSC) is used as controller for transient stability enhancement. The trade-off in accuracy and speed in generating control law using linearized models becomes ineffective for changed operating scenarios. In addition, forming multi-machine linearized model becomes challenging when TCSC appears as non-separable element of a dense admittance matrix, which can be separated as a control variable in single-machine infinite-bus system. Overcoming the limitations of linearized controllers, the present paper verifies the Kuramoto mean-field condition using Kron reduction with non-trivial transfer conductances for unstable post-fault scenario. To regain synchronization effectively, necessary TCSC compensation has adjusted network parameters as proved by MATLAB simulations performed on 12-bus system, where real-time data is acquired by phasor measurement units.\",\"PeriodicalId\":421943,\"journal\":{\"name\":\"2013 North American Power Symposium (NAPS)\",\"volume\":\"261 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2013.6666837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient stability assessment and synchronization of multimachine power system using Kuramoto model
The crucial issue of loss of synchronization in post-disturbance conditions may lead to blackouts if corrective action is delayed. The complication increases due to large computation burden and time for wide-area network where thyristor-controlled series compensator (TCSC) is used as controller for transient stability enhancement. The trade-off in accuracy and speed in generating control law using linearized models becomes ineffective for changed operating scenarios. In addition, forming multi-machine linearized model becomes challenging when TCSC appears as non-separable element of a dense admittance matrix, which can be separated as a control variable in single-machine infinite-bus system. Overcoming the limitations of linearized controllers, the present paper verifies the Kuramoto mean-field condition using Kron reduction with non-trivial transfer conductances for unstable post-fault scenario. To regain synchronization effectively, necessary TCSC compensation has adjusted network parameters as proved by MATLAB simulations performed on 12-bus system, where real-time data is acquired by phasor measurement units.