基于相关分析法的SISO神经模糊维纳模型辨识

Qi Xiong, L. Jia, Yong Chen
{"title":"基于相关分析法的SISO神经模糊维纳模型辨识","authors":"Qi Xiong, L. Jia, Yong Chen","doi":"10.1109/DDCLS.2017.8068052","DOIUrl":null,"url":null,"abstract":"A novel identification algorithm is presented in this paper for neuro-fuzzy based single-input-single-output (SISO) Wiener model with colored noises. The independent identical distribution (iid) Gaussian random signals are adopted to identify the Wiener system, leading to the separation of linear part from nonlinear counterpart in the identification problem. Therefore, correlation analysis method can be used for the identification of the linear part. Moreover, least-squares-based parameter identification algorithm that can avoid the impact of colored noise is proposed to identify the static nonlinear part. Lastly, an example is used to verify the effectiveness of the proposed method.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SISO neuro-fuzzy wiener model identification by correlation analysis method\",\"authors\":\"Qi Xiong, L. Jia, Yong Chen\",\"doi\":\"10.1109/DDCLS.2017.8068052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel identification algorithm is presented in this paper for neuro-fuzzy based single-input-single-output (SISO) Wiener model with colored noises. The independent identical distribution (iid) Gaussian random signals are adopted to identify the Wiener system, leading to the separation of linear part from nonlinear counterpart in the identification problem. Therefore, correlation analysis method can be used for the identification of the linear part. Moreover, least-squares-based parameter identification algorithm that can avoid the impact of colored noise is proposed to identify the static nonlinear part. Lastly, an example is used to verify the effectiveness of the proposed method.\",\"PeriodicalId\":419114,\"journal\":{\"name\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2017.8068052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于神经模糊的彩色噪声单输入单输出(SISO)维纳模型识别算法。采用独立同分布(iid)高斯随机信号对维纳系统进行辨识,导致辨识问题中线性部分与非线性部分分离。因此,可以采用相关分析法对线性零件进行识别。此外,提出了基于最小二乘的参数识别算法,该算法可以避免有色噪声的影响,以识别静态非线性部分。最后,通过一个算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A SISO neuro-fuzzy wiener model identification by correlation analysis method
A novel identification algorithm is presented in this paper for neuro-fuzzy based single-input-single-output (SISO) Wiener model with colored noises. The independent identical distribution (iid) Gaussian random signals are adopted to identify the Wiener system, leading to the separation of linear part from nonlinear counterpart in the identification problem. Therefore, correlation analysis method can be used for the identification of the linear part. Moreover, least-squares-based parameter identification algorithm that can avoid the impact of colored noise is proposed to identify the static nonlinear part. Lastly, an example is used to verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-free adaptive MIMO control algorithm application in polishing robot Multiple-fault diagnosis of analog circuit with fault tolerance Iterative learning control for switched singular systems Active disturbance rejection generalized predictive control and its application on large time-delay systems Robust ADRC for nonlinear time-varying system with uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1