{"title":"副翼横流、地面效应和双翼构型的计算研究","authors":"M. Alsarheed, A. Sedaghat","doi":"10.4172/2168-9792.1000161","DOIUrl":null,"url":null,"abstract":"An aileron, part of the trailing edge of a fixed-wing airplane, is used to control aircraft’s movement around its longitudinal axis (roll). Ailerons have significant impacts on airfoil surface pressure and its lift and drag coefficients. Both panel and finite volume methods were used on a NACA 2412 airfoil with a 20% aileron in a cross flow. The aerodynamic performance of ailerons alone, in a biplane configuration, and in the ground effects has been computationally investigated using both the panel and the finite volume methods. Several parameters were analyzed including the effects of the attack angle of the airfoil, aileron deflection angle, the ride height from the ground, and the characteristics of biplanes. Results of both computational methods are presented and discussed for the aforementioned configurations of NACA 2412 airfoil with aileron.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational Study of Ailerons in Cross Flows Ground Effects andBiplanes Configurations\",\"authors\":\"M. Alsarheed, A. Sedaghat\",\"doi\":\"10.4172/2168-9792.1000161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An aileron, part of the trailing edge of a fixed-wing airplane, is used to control aircraft’s movement around its longitudinal axis (roll). Ailerons have significant impacts on airfoil surface pressure and its lift and drag coefficients. Both panel and finite volume methods were used on a NACA 2412 airfoil with a 20% aileron in a cross flow. The aerodynamic performance of ailerons alone, in a biplane configuration, and in the ground effects has been computationally investigated using both the panel and the finite volume methods. Several parameters were analyzed including the effects of the attack angle of the airfoil, aileron deflection angle, the ride height from the ground, and the characteristics of biplanes. Results of both computational methods are presented and discussed for the aforementioned configurations of NACA 2412 airfoil with aileron.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Study of Ailerons in Cross Flows Ground Effects andBiplanes Configurations
An aileron, part of the trailing edge of a fixed-wing airplane, is used to control aircraft’s movement around its longitudinal axis (roll). Ailerons have significant impacts on airfoil surface pressure and its lift and drag coefficients. Both panel and finite volume methods were used on a NACA 2412 airfoil with a 20% aileron in a cross flow. The aerodynamic performance of ailerons alone, in a biplane configuration, and in the ground effects has been computationally investigated using both the panel and the finite volume methods. Several parameters were analyzed including the effects of the attack angle of the airfoil, aileron deflection angle, the ride height from the ground, and the characteristics of biplanes. Results of both computational methods are presented and discussed for the aforementioned configurations of NACA 2412 airfoil with aileron.