预测无症状健康人群冠状动脉钙化的机器学习算法

K. Kolli, S. H. Park, J. Min, H. Chang, D. Han, H. Gransar, J. Lee, Su-Yeon Choi, E. Chun, H. Jung, J. Sung, H. Han
{"title":"预测无症状健康人群冠状动脉钙化的机器学习算法","authors":"K. Kolli, S. H. Park, J. Min, H. Chang, D. Han, H. Gransar, J. Lee, Su-Yeon Choi, E. Chun, H. Jung, J. Sung, H. Han","doi":"10.1109/HI-POCT45284.2019.8962647","DOIUrl":null,"url":null,"abstract":"Coronary artery calcium (CAC) is an established surrogate marker for coronary atherosclerotic disease (CAD) burden. The CAC score is also an independent predictor of adverse events with significant incremental prognostic value over traditional/clinical risk stratification algorithms. The objective of this study was to examine the prognostic ability of Machine learning (ML) based algorithms to predict multi-class CAC (0: normal; 1–100: low risk CAD; 101–400 Intermediate risk CAD; >400 severe/high risk CAD) from available electronic health record (EHR) data. A retrospective observation study of 60,923 asymptomatic patients with clinically evaluated CAC score along with sixty five clinical and laboratory parameters were included in developing the ML algorithm (data split into 70% [training] and 30% [test]). In addition, a separate cohort of 7,552 patients was used to externally validate the developed ML algorithm. Classification performance was assessed using the area under the receiver operating curve (AUC). The prediction algorithm derived from the ML method showed high predictive value for CAC risk category.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine learning algorithm to predict coronary artery calcification in asymptomatic healthy population\",\"authors\":\"K. Kolli, S. H. Park, J. Min, H. Chang, D. Han, H. Gransar, J. Lee, Su-Yeon Choi, E. Chun, H. Jung, J. Sung, H. Han\",\"doi\":\"10.1109/HI-POCT45284.2019.8962647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronary artery calcium (CAC) is an established surrogate marker for coronary atherosclerotic disease (CAD) burden. The CAC score is also an independent predictor of adverse events with significant incremental prognostic value over traditional/clinical risk stratification algorithms. The objective of this study was to examine the prognostic ability of Machine learning (ML) based algorithms to predict multi-class CAC (0: normal; 1–100: low risk CAD; 101–400 Intermediate risk CAD; >400 severe/high risk CAD) from available electronic health record (EHR) data. A retrospective observation study of 60,923 asymptomatic patients with clinically evaluated CAC score along with sixty five clinical and laboratory parameters were included in developing the ML algorithm (data split into 70% [training] and 30% [test]). In addition, a separate cohort of 7,552 patients was used to externally validate the developed ML algorithm. Classification performance was assessed using the area under the receiver operating curve (AUC). The prediction algorithm derived from the ML method showed high predictive value for CAC risk category.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

冠状动脉钙(CAC)是冠状动脉粥样硬化疾病(CAD)负担的替代标志物。CAC评分也是不良事件的独立预测因子,与传统/临床风险分层算法相比,其预后价值显著增加。本研究的目的是检验基于机器学习(ML)的算法预测多类CAC的预测能力(0:正常;1-100:低风险CAD;101-400中危CAD;>400严重/高风险CAD),来自现有电子健康记录(EHR)数据。一项回顾性观察研究纳入了60,923名无症状患者的临床评估CAC评分以及65个临床和实验室参数,以开发ML算法(数据分为70%[训练]和30%[测试])。此外,一个独立的7552例患者队列被用于外部验证开发的ML算法。采用受试者工作曲线下面积(AUC)评价分类效果。基于ML方法的预测算法对CAC风险类别具有较高的预测价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning algorithm to predict coronary artery calcification in asymptomatic healthy population
Coronary artery calcium (CAC) is an established surrogate marker for coronary atherosclerotic disease (CAD) burden. The CAC score is also an independent predictor of adverse events with significant incremental prognostic value over traditional/clinical risk stratification algorithms. The objective of this study was to examine the prognostic ability of Machine learning (ML) based algorithms to predict multi-class CAC (0: normal; 1–100: low risk CAD; 101–400 Intermediate risk CAD; >400 severe/high risk CAD) from available electronic health record (EHR) data. A retrospective observation study of 60,923 asymptomatic patients with clinically evaluated CAC score along with sixty five clinical and laboratory parameters were included in developing the ML algorithm (data split into 70% [training] and 30% [test]). In addition, a separate cohort of 7,552 patients was used to externally validate the developed ML algorithm. Classification performance was assessed using the area under the receiver operating curve (AUC). The prediction algorithm derived from the ML method showed high predictive value for CAC risk category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Nanoscale Electrode for Biosensing A Motion Free Image Based TRF Reader for Quantitative Immunoassay Gaze-based video games for assessment of attention outside of the lab Conjugated Barcoded Particles for Multiplexed Biomarker Quantification with a Microfluidic Biochip Daily Locomotor Movement Recognition with a Smart Insole and a Pre-defined Route Map: Towards Early Motor Dysfunction Detection*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1