ClaVis:一个用于分类器的交互式视觉比较系统

Frank Heyen, T. Munz, M. Neumann, Daniel Ortega, Ngoc Thang Vu, D. Weiskopf, M. Sedlmair
{"title":"ClaVis:一个用于分类器的交互式视觉比较系统","authors":"Frank Heyen, T. Munz, M. Neumann, Daniel Ortega, Ngoc Thang Vu, D. Weiskopf, M. Sedlmair","doi":"10.1145/3399715.3399814","DOIUrl":null,"url":null,"abstract":"We propose ClaVis, a visual analytics system for comparative analysis of classification models. ClaVis allows users to visually compare the performance and behavior of tens to hundreds of classifiers trained with different hyperparameter configurations. Our approach is plugin-based and classifier-agnostic and allows users to add their own datasets and classifier implementations. It provides multiple visualizations, including a multivariate ranking, a similarity map, a scatterplot that reveals correlations between parameters and scores, and a training history chart. We demonstrate the effectivity of our approach in multiple case studies for training classification models in the domain of natural language processing.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":"114 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ClaVis: An Interactive Visual Comparison System for Classifiers\",\"authors\":\"Frank Heyen, T. Munz, M. Neumann, Daniel Ortega, Ngoc Thang Vu, D. Weiskopf, M. Sedlmair\",\"doi\":\"10.1145/3399715.3399814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ClaVis, a visual analytics system for comparative analysis of classification models. ClaVis allows users to visually compare the performance and behavior of tens to hundreds of classifiers trained with different hyperparameter configurations. Our approach is plugin-based and classifier-agnostic and allows users to add their own datasets and classifier implementations. It provides multiple visualizations, including a multivariate ranking, a similarity map, a scatterplot that reveals correlations between parameters and scores, and a training history chart. We demonstrate the effectivity of our approach in multiple case studies for training classification models in the domain of natural language processing.\",\"PeriodicalId\":149902,\"journal\":{\"name\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"volume\":\"114 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399715.3399814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了ClaVis,一个用于分类模型比较分析的可视化分析系统。ClaVis允许用户直观地比较使用不同超参数配置训练的数十到数百个分类器的性能和行为。我们的方法基于插件,与分类器无关,允许用户添加自己的数据集和分类器实现。它提供多种可视化,包括多变量排名、相似度图、揭示参数和分数之间相关性的散点图,以及训练历史图。我们在自然语言处理领域训练分类模型的多个案例研究中证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ClaVis: An Interactive Visual Comparison System for Classifiers
We propose ClaVis, a visual analytics system for comparative analysis of classification models. ClaVis allows users to visually compare the performance and behavior of tens to hundreds of classifiers trained with different hyperparameter configurations. Our approach is plugin-based and classifier-agnostic and allows users to add their own datasets and classifier implementations. It provides multiple visualizations, including a multivariate ranking, a similarity map, a scatterplot that reveals correlations between parameters and scores, and a training history chart. We demonstrate the effectivity of our approach in multiple case studies for training classification models in the domain of natural language processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeyTAP Comparing and Exploring High-Dimensional Data with Dimensionality Reduction Algorithms and Matrix Visualizations VITRuM Evaluating User Preferences for Augmented Reality Interactions with the Internet of Things TieLent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1