Jaakko Pihlajasalo, D. Korpi, T. Riihonen, J. Talvitie, M. Uusitalo, M. Valkama
{"title":"基于深度学习接收机的OFDM波形检测","authors":"Jaakko Pihlajasalo, D. Korpi, T. Riihonen, J. Talvitie, M. Uusitalo, M. Valkama","doi":"10.1109/spawc51304.2022.9834021","DOIUrl":null,"url":null,"abstract":"With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper, we describe deep learning based physical-layer receiver solution, with neural network layers in both time- and frequency-domain, to efficiently demodulate OFDM signals under coexisting IQ, PN and PA impairments. 5G NR standard-compliant numerical results are provided at 28 GHz band to assess the receiver performance, demonstrating excellent robustness against varying impairment levels when properly trained.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Impaired OFDM Waveforms Using Deep Learning Receiver\",\"authors\":\"Jaakko Pihlajasalo, D. Korpi, T. Riihonen, J. Talvitie, M. Uusitalo, M. Valkama\",\"doi\":\"10.1109/spawc51304.2022.9834021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper, we describe deep learning based physical-layer receiver solution, with neural network layers in both time- and frequency-domain, to efficiently demodulate OFDM signals under coexisting IQ, PN and PA impairments. 5G NR standard-compliant numerical results are provided at 28 GHz band to assess the receiver performance, demonstrating excellent robustness against varying impairment levels when properly trained.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9834021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Impaired OFDM Waveforms Using Deep Learning Receiver
With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper, we describe deep learning based physical-layer receiver solution, with neural network layers in both time- and frequency-domain, to efficiently demodulate OFDM signals under coexisting IQ, PN and PA impairments. 5G NR standard-compliant numerical results are provided at 28 GHz band to assess the receiver performance, demonstrating excellent robustness against varying impairment levels when properly trained.