M. Hürlimann, Brian Davis, Keith Cortis, A. Freitas, S. Handschuh, Sergio Fernández
{"title":"英国脱欧公投的推特情绪黄金标准","authors":"M. Hürlimann, Brian Davis, Keith Cortis, A. Freitas, S. Handschuh, Sergio Fernández","doi":"10.1145/2993318.2993350","DOIUrl":null,"url":null,"abstract":"In this paper, we present a sentiment-annotated Twitter gold standard for the Brexit referendum. The data set consists of 2,000 Twitter messages (\"tweets\") annotated with information about the sentiment expressed, the strength of the sentiment, and context dependence. This is a valuable resource for social media-based opinion mining in the context of political events.","PeriodicalId":177013,"journal":{"name":"Proceedings of the 12th International Conference on Semantic Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Twitter Sentiment Gold Standard for the Brexit Referendum\",\"authors\":\"M. Hürlimann, Brian Davis, Keith Cortis, A. Freitas, S. Handschuh, Sergio Fernández\",\"doi\":\"10.1145/2993318.2993350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a sentiment-annotated Twitter gold standard for the Brexit referendum. The data set consists of 2,000 Twitter messages (\\\"tweets\\\") annotated with information about the sentiment expressed, the strength of the sentiment, and context dependence. This is a valuable resource for social media-based opinion mining in the context of political events.\",\"PeriodicalId\":177013,\"journal\":{\"name\":\"Proceedings of the 12th International Conference on Semantic Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993318.2993350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993318.2993350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Twitter Sentiment Gold Standard for the Brexit Referendum
In this paper, we present a sentiment-annotated Twitter gold standard for the Brexit referendum. The data set consists of 2,000 Twitter messages ("tweets") annotated with information about the sentiment expressed, the strength of the sentiment, and context dependence. This is a valuable resource for social media-based opinion mining in the context of political events.