英国脱欧公投的推特情绪黄金标准

M. Hürlimann, Brian Davis, Keith Cortis, A. Freitas, S. Handschuh, Sergio Fernández
{"title":"英国脱欧公投的推特情绪黄金标准","authors":"M. Hürlimann, Brian Davis, Keith Cortis, A. Freitas, S. Handschuh, Sergio Fernández","doi":"10.1145/2993318.2993350","DOIUrl":null,"url":null,"abstract":"In this paper, we present a sentiment-annotated Twitter gold standard for the Brexit referendum. The data set consists of 2,000 Twitter messages (\"tweets\") annotated with information about the sentiment expressed, the strength of the sentiment, and context dependence. This is a valuable resource for social media-based opinion mining in the context of political events.","PeriodicalId":177013,"journal":{"name":"Proceedings of the 12th International Conference on Semantic Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Twitter Sentiment Gold Standard for the Brexit Referendum\",\"authors\":\"M. Hürlimann, Brian Davis, Keith Cortis, A. Freitas, S. Handschuh, Sergio Fernández\",\"doi\":\"10.1145/2993318.2993350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a sentiment-annotated Twitter gold standard for the Brexit referendum. The data set consists of 2,000 Twitter messages (\\\"tweets\\\") annotated with information about the sentiment expressed, the strength of the sentiment, and context dependence. This is a valuable resource for social media-based opinion mining in the context of political events.\",\"PeriodicalId\":177013,\"journal\":{\"name\":\"Proceedings of the 12th International Conference on Semantic Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993318.2993350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993318.2993350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在本文中,我们为英国脱欧公投提出了一个带有情绪注释的Twitter黄金标准。该数据集由2,000条Twitter消息(“tweets”)组成,并注释了有关所表达的情感、情感强度和上下文依赖性的信息。这是在政治事件背景下基于社交媒体的意见挖掘的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Twitter Sentiment Gold Standard for the Brexit Referendum
In this paper, we present a sentiment-annotated Twitter gold standard for the Brexit referendum. The data set consists of 2,000 Twitter messages ("tweets") annotated with information about the sentiment expressed, the strength of the sentiment, and context dependence. This is a valuable resource for social media-based opinion mining in the context of political events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Top-level Ideas about Importing, Translating and Exporting Knowledge via an Ontology of Representation Languages Cross-Evaluation of Entity Linking and Disambiguation Systems for Clinical Text Annotation Executing SPARQL queries over Mapped Document Store with SparqlMap-M Evaluating Query and Storage Strategies for RDF Archives Linking Images to Semantic Knowledge Base with User-generated Tags
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1