基于语义聚类词的汉字识别语言模型

Hsi-Jian Lee, Cheng-Huang Tung
{"title":"基于语义聚类词的汉字识别语言模型","authors":"Hsi-Jian Lee, Cheng-Huang Tung","doi":"10.1109/ICDAR.1995.599033","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for clustering the words in a dictionary into word groups, which are applied in a Chinese character recognition system with a language model to describe the contextual information. The Chinese synonym dictionary Tong2yi4ci2 ci2lin2 providing the semantic features is used to train the weights of the semantic attributes of the character-based word classes. The weights of the semantic attributes are next updated according to the words of the behavior dictionary, which has a rather complete word set. Then, the updated word classes are clustered into m groups according to the semantic measurement by a greedy method. The words in the behavior dictionary can finally be assigned into the m groups. The parameter space for bigram contextual information of the character recognition system is m/sup 2/. From the experimental results, the recognition system with the proposed model has shown better performance than that of a character-based bigram language model.","PeriodicalId":273519,"journal":{"name":"Proceedings of 3rd International Conference on Document Analysis and Recognition","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A language model based on semantically clustered words in a Chinese character recognition system\",\"authors\":\"Hsi-Jian Lee, Cheng-Huang Tung\",\"doi\":\"10.1109/ICDAR.1995.599033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for clustering the words in a dictionary into word groups, which are applied in a Chinese character recognition system with a language model to describe the contextual information. The Chinese synonym dictionary Tong2yi4ci2 ci2lin2 providing the semantic features is used to train the weights of the semantic attributes of the character-based word classes. The weights of the semantic attributes are next updated according to the words of the behavior dictionary, which has a rather complete word set. Then, the updated word classes are clustered into m groups according to the semantic measurement by a greedy method. The words in the behavior dictionary can finally be assigned into the m groups. The parameter space for bigram contextual information of the character recognition system is m/sup 2/. From the experimental results, the recognition system with the proposed model has shown better performance than that of a character-based bigram language model.\",\"PeriodicalId\":273519,\"journal\":{\"name\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1995.599033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1995.599033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种将词典中的词聚类成词组的新方法,并将其应用于基于语言模型描述上下文信息的汉字识别系统中。使用提供语义特征的汉语同义词词典Tong2yi4ci2 ci2lin2来训练基于字符的词类的语义属性权值。然后根据行为字典中的单词更新语义属性的权重,该字典具有相当完整的单词集。然后,根据语义度量,采用贪心方法将更新后的词类聚为m组。行为字典中的单词最终可以分配到m组中。字符识别系统的双字母上下文信息的参数空间为m/sup 2/。实验结果表明,基于该模型的识别系统比基于字符的双字语言模型具有更好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A language model based on semantically clustered words in a Chinese character recognition system
This paper presents a new method for clustering the words in a dictionary into word groups, which are applied in a Chinese character recognition system with a language model to describe the contextual information. The Chinese synonym dictionary Tong2yi4ci2 ci2lin2 providing the semantic features is used to train the weights of the semantic attributes of the character-based word classes. The weights of the semantic attributes are next updated according to the words of the behavior dictionary, which has a rather complete word set. Then, the updated word classes are clustered into m groups according to the semantic measurement by a greedy method. The words in the behavior dictionary can finally be assigned into the m groups. The parameter space for bigram contextual information of the character recognition system is m/sup 2/. From the experimental results, the recognition system with the proposed model has shown better performance than that of a character-based bigram language model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of courtesy amount block on bank checks Visual inter-word relations and their use in OCR postprocessing Interactive acquisition of thematic information of Chinese verbs for judicial verdict document understanding using templates, syntactic clues, and heuristics Knowledge-based derivation of document logical structure Evaluation of an interactive tool for handwritten form description
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1