基线语义垃圾邮件过滤

Christian F. Hempelmann, Vikas Mehra
{"title":"基线语义垃圾邮件过滤","authors":"Christian F. Hempelmann, Vikas Mehra","doi":"10.1109/WI-IAT.2011.133","DOIUrl":null,"url":null,"abstract":"This paper presents a meaning-based method to distinguish text without or with little semantic content from text that has meaning which can be processed. The basic method assumes that a semantic analyzer will be able to produce less output from semantically less grammatical input text. The method was pilot-tested on a corpus of blog spam. Future improvements, including a method to distinguish semantically unified from semantically disparate text are sketched. The tested method, but even more the projected improvements, open up the way to taking the spam filtering arms race to a new level that is very costly to spam producers.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"818 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Baseline Semantic Spam Filtering\",\"authors\":\"Christian F. Hempelmann, Vikas Mehra\",\"doi\":\"10.1109/WI-IAT.2011.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a meaning-based method to distinguish text without or with little semantic content from text that has meaning which can be processed. The basic method assumes that a semantic analyzer will be able to produce less output from semantically less grammatical input text. The method was pilot-tested on a corpus of blog spam. Future improvements, including a method to distinguish semantically unified from semantically disparate text are sketched. The tested method, but even more the projected improvements, open up the way to taking the spam filtering arms race to a new level that is very costly to spam producers.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"818 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于意义的文本识别方法,用于区分没有或很少语义内容的文本和具有可处理意义的文本。基本方法假定语义分析器能够从语义较少的语法输入文本中产生较少的输出。该方法在一个博客垃圾语料库上进行了试点测试。未来的改进,包括一种方法来区分语义统一和语义不同的文本概述。经过测试的方法,更重要的是预期的改进,将把垃圾邮件过滤军备竞赛提升到一个新的水平,这对垃圾邮件生产者来说是非常昂贵的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Baseline Semantic Spam Filtering
This paper presents a meaning-based method to distinguish text without or with little semantic content from text that has meaning which can be processed. The basic method assumes that a semantic analyzer will be able to produce less output from semantically less grammatical input text. The method was pilot-tested on a corpus of blog spam. Future improvements, including a method to distinguish semantically unified from semantically disparate text are sketched. The tested method, but even more the projected improvements, open up the way to taking the spam filtering arms race to a new level that is very costly to spam producers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1