一个基于模型的用于设计抢占式实时任务的符号调度器的框架

V. Janarthanan, Abdelouahed Gherbi
{"title":"一个基于模型的用于设计抢占式实时任务的符号调度器的框架","authors":"V. Janarthanan, Abdelouahed Gherbi","doi":"10.1109/ISSPA.2012.6310654","DOIUrl":null,"url":null,"abstract":"We had shown in our previous work [7, 9] that supervisory control theory (SCT) of discrete-event systems could be applied for scheduling hard real-time systems. In particular, we had presented a formal framework for the synthesis of real-time schedulers on single processor systems using priority-based supervisory control of timed discrete-event systems (TDES). We had also provided the extension of SCT in designing schedulers for uniform multiprocessor systems [8]. As we had considered discrete time models in our scheduler design, the state sizes were substantially large, and increased exponentially with the number of real-time tasks. In order to reduce the state space explosion problem in our models, we have utilized a modified form of symbolic modeling methodology [3], along with the pre-stable algorithm proposed in [3], for reducing state space while designing schedulers for real-time tasks on uniprocessor systems. The main contribution through this paper has been the development of an informal procedure for uniprocessor scheduler design with reduced state space for preemptive real-time tasks.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model-based framework for the design of a symbolic scheduler for pre-emptive real-time tasks\",\"authors\":\"V. Janarthanan, Abdelouahed Gherbi\",\"doi\":\"10.1109/ISSPA.2012.6310654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We had shown in our previous work [7, 9] that supervisory control theory (SCT) of discrete-event systems could be applied for scheduling hard real-time systems. In particular, we had presented a formal framework for the synthesis of real-time schedulers on single processor systems using priority-based supervisory control of timed discrete-event systems (TDES). We had also provided the extension of SCT in designing schedulers for uniform multiprocessor systems [8]. As we had considered discrete time models in our scheduler design, the state sizes were substantially large, and increased exponentially with the number of real-time tasks. In order to reduce the state space explosion problem in our models, we have utilized a modified form of symbolic modeling methodology [3], along with the pre-stable algorithm proposed in [3], for reducing state space while designing schedulers for real-time tasks on uniprocessor systems. The main contribution through this paper has been the development of an informal procedure for uniprocessor scheduler design with reduced state space for preemptive real-time tasks.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在之前的工作[7,9]中已经表明,离散事件系统的监督控制理论(SCT)可以应用于调度硬实时系统。特别是,我们提出了一个正式的框架,用于使用基于优先级的时间离散事件系统(TDES)的监督控制在单处理器系统上综合实时调度程序。我们还提供了SCT在为统一多处理器系统[8]设计调度器方面的扩展。由于我们在调度器设计中考虑了离散时间模型,状态大小非常大,并且随着实时任务的数量呈指数增长。为了减少模型中的状态空间爆炸问题,我们使用了一种改进形式的符号建模方法[3],以及[3]中提出的预稳定算法,在为单处理器系统上的实时任务设计调度程序时减少状态空间。本文的主要贡献是开发了一个非正式的单处理器调度程序设计过程,该程序具有减少抢占式实时任务的状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A model-based framework for the design of a symbolic scheduler for pre-emptive real-time tasks
We had shown in our previous work [7, 9] that supervisory control theory (SCT) of discrete-event systems could be applied for scheduling hard real-time systems. In particular, we had presented a formal framework for the synthesis of real-time schedulers on single processor systems using priority-based supervisory control of timed discrete-event systems (TDES). We had also provided the extension of SCT in designing schedulers for uniform multiprocessor systems [8]. As we had considered discrete time models in our scheduler design, the state sizes were substantially large, and increased exponentially with the number of real-time tasks. In order to reduce the state space explosion problem in our models, we have utilized a modified form of symbolic modeling methodology [3], along with the pre-stable algorithm proposed in [3], for reducing state space while designing schedulers for real-time tasks on uniprocessor systems. The main contribution through this paper has been the development of an informal procedure for uniprocessor scheduler design with reduced state space for preemptive real-time tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online mvbf adaptation under diffuse noise environments with mimo based noise pre-filtering Hierarchical scheme for Arabic text recognition Precoder selection and rank adaptation in MIMO-OFDM Head detection using Kinect camera and its application to fall detection Wavelength and code division multiplexing toward diffuse optical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1