大型数据库应用中一种高效的重复检测方法

Ji Zhang
{"title":"大型数据库应用中一种高效的重复检测方法","authors":"Ji Zhang","doi":"10.1109/NSS.2010.78","DOIUrl":null,"url":null,"abstract":"In this paper, we developed a robust data cleaning technique, called PC-Filter+ (PC stands for partition comparison) based on its predecessor, for effective and efficient duplicate record detection in large databases. PC-Filter+ provides more flexible algorithmic options for constructing the Partition Comparison Graph (PCG). In addition, PC-Filter+ is able to deal with duplicate detection under different memory constraints.","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"16 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Efficient and Effective Duplication Detection Method in Large Database Applications\",\"authors\":\"Ji Zhang\",\"doi\":\"10.1109/NSS.2010.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we developed a robust data cleaning technique, called PC-Filter+ (PC stands for partition comparison) based on its predecessor, for effective and efficient duplicate record detection in large databases. PC-Filter+ provides more flexible algorithmic options for constructing the Partition Comparison Graph (PCG). In addition, PC-Filter+ is able to deal with duplicate detection under different memory constraints.\",\"PeriodicalId\":127173,\"journal\":{\"name\":\"2010 Fourth International Conference on Network and System Security\",\"volume\":\"16 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth International Conference on Network and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS.2010.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们在其前身的基础上开发了一种强大的数据清理技术,称为PC- filter + (PC代表分区比较),用于在大型数据库中有效和高效地检测重复记录。PC-Filter+为构造分区比较图(PCG)提供了更灵活的算法选项。此外,PC-Filter+能够处理不同内存约束下的重复检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient and Effective Duplication Detection Method in Large Database Applications
In this paper, we developed a robust data cleaning technique, called PC-Filter+ (PC stands for partition comparison) based on its predecessor, for effective and efficient duplicate record detection in large databases. PC-Filter+ provides more flexible algorithmic options for constructing the Partition Comparison Graph (PCG). In addition, PC-Filter+ is able to deal with duplicate detection under different memory constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving Protocols for String Matching The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm Ignorant Experts: Computer and Network Security Support from Internet Service Providers Resource Selection from Distributed Semantic Web Stores A Purpose Based Access Control in XML Databases System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1