通过相关领域分析发现应用中的异常和根本原因

Yuchen Zhao, Arjun Iyer, Ariel Smoliar
{"title":"通过相关领域分析发现应用中的异常和根本原因","authors":"Yuchen Zhao, Arjun Iyer, Ariel Smoliar","doi":"10.1109/ICDMW.2015.68","DOIUrl":null,"url":null,"abstract":"In this paper, we present a powerful end-to-end data mining system that collects application related data and provides insightful relevant fields analysis in addition to search and filtering. We present details on field extraction, indexing, relevant field processing and dynamic baseline derivation. We also propose to demonstrate the effectiveness of various scoring algorithms. Two real-world use cases show relevant fields analysis is effective to detect application anomalies and discover root causes of application incidents.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering Anomalies and Root Causes in Applications via Relevant Fields Analysis\",\"authors\":\"Yuchen Zhao, Arjun Iyer, Ariel Smoliar\",\"doi\":\"10.1109/ICDMW.2015.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a powerful end-to-end data mining system that collects application related data and provides insightful relevant fields analysis in addition to search and filtering. We present details on field extraction, indexing, relevant field processing and dynamic baseline derivation. We also propose to demonstrate the effectiveness of various scoring algorithms. Two real-world use cases show relevant fields analysis is effective to detect application anomalies and discover root causes of application incidents.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"18 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个强大的端到端数据挖掘系统,除了搜索和过滤之外,还可以收集与应用程序相关的数据,并提供深刻的相关领域分析。详细介绍了字段提取、索引、相关字段处理和动态基线推导。我们还建议演示各种评分算法的有效性。两个真实的用例表明,相关领域分析对于检测应用程序异常和发现应用程序事件的根本原因是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Anomalies and Root Causes in Applications via Relevant Fields Analysis
In this paper, we present a powerful end-to-end data mining system that collects application related data and provides insightful relevant fields analysis in addition to search and filtering. We present details on field extraction, indexing, relevant field processing and dynamic baseline derivation. We also propose to demonstrate the effectiveness of various scoring algorithms. Two real-world use cases show relevant fields analysis is effective to detect application anomalies and discover root causes of application incidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1