弹性蜂窝回程网络设计的预测影响分析

Sen Yang, He Yan, Zihui Ge, Dongmei Wang, Jun Xu
{"title":"弹性蜂窝回程网络设计的预测影响分析","authors":"Sen Yang, He Yan, Zihui Ge, Dongmei Wang, Jun Xu","doi":"10.1145/3219617.3219651","DOIUrl":null,"url":null,"abstract":"Backhaul transport network design and optimization for cellular service providers involve a unique challenge stemming from the fact that an end-user's equipment (UE) is within the radio reach of multiple cellular towers: It is hard to evaluate the impact of the failure of the UE's primary serving tower on the UE, because the UE may simply switch to get service from other nearby cellular towers. To overcome this challenge, one needs to quantify the cellular service redundancy among the cellular towers riding on that transport circuit and their nearby cellular towers, which in turn requires a comprehensive understanding of the radio signal profile in the area of the impacted towers, the spatial distribution of UEs therein, and their expected workload (e.g., calls, data throughput). In this work, we develop a novel methodology for assessing the service impact of any hypothetical cellular tower outage scenario, and implement it in an operational system named Tower Outage Impact Predictor (TOIP). Our evaluations, using both synthetic data and historical real tower outages in a large operational cellular network, show conclusively that TOIP gives an accurate assessment of various tower outage scenarios, and can provide critical input data towards designing a reliable cellular backhaul transport network.","PeriodicalId":210440,"journal":{"name":"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Impact Analysis for Designing a Resilient Cellular Backhaul Network\",\"authors\":\"Sen Yang, He Yan, Zihui Ge, Dongmei Wang, Jun Xu\",\"doi\":\"10.1145/3219617.3219651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backhaul transport network design and optimization for cellular service providers involve a unique challenge stemming from the fact that an end-user's equipment (UE) is within the radio reach of multiple cellular towers: It is hard to evaluate the impact of the failure of the UE's primary serving tower on the UE, because the UE may simply switch to get service from other nearby cellular towers. To overcome this challenge, one needs to quantify the cellular service redundancy among the cellular towers riding on that transport circuit and their nearby cellular towers, which in turn requires a comprehensive understanding of the radio signal profile in the area of the impacted towers, the spatial distribution of UEs therein, and their expected workload (e.g., calls, data throughput). In this work, we develop a novel methodology for assessing the service impact of any hypothetical cellular tower outage scenario, and implement it in an operational system named Tower Outage Impact Predictor (TOIP). Our evaluations, using both synthetic data and historical real tower outages in a large operational cellular network, show conclusively that TOIP gives an accurate assessment of various tower outage scenarios, and can provide critical input data towards designing a reliable cellular backhaul transport network.\",\"PeriodicalId\":210440,\"journal\":{\"name\":\"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3219617.3219651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219617.3219651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蜂窝服务提供商的回程传输网络设计和优化涉及一个独特的挑战,这一挑战源于终端用户的设备(UE)在多个蜂窝塔的无线电覆盖范围内:很难评估UE主要服务塔故障对UE的影响,因为UE可能简单地切换到附近其他蜂窝塔获取服务。为了克服这一挑战,需要量化该传输电路上的蜂窝塔及其附近的蜂窝塔之间的蜂窝服务冗余,这反过来又需要全面了解受影响塔区域的无线电信号概况,其中ue的空间分布以及它们的预期工作负载(例如,呼叫,数据吞吐量)。在这项工作中,我们开发了一种新的方法来评估任何假设的蜂窝塔中断场景的服务影响,并在一个名为塔中断影响预测器(TOIP)的操作系统中实现它。我们的评估使用了综合数据和大型运营蜂窝网络中历史真实的塔中断,最终表明TOIP给出了各种塔中断情况的准确评估,并可以为设计可靠的蜂窝回程传输网络提供关键的输入数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Impact Analysis for Designing a Resilient Cellular Backhaul Network
Backhaul transport network design and optimization for cellular service providers involve a unique challenge stemming from the fact that an end-user's equipment (UE) is within the radio reach of multiple cellular towers: It is hard to evaluate the impact of the failure of the UE's primary serving tower on the UE, because the UE may simply switch to get service from other nearby cellular towers. To overcome this challenge, one needs to quantify the cellular service redundancy among the cellular towers riding on that transport circuit and their nearby cellular towers, which in turn requires a comprehensive understanding of the radio signal profile in the area of the impacted towers, the spatial distribution of UEs therein, and their expected workload (e.g., calls, data throughput). In this work, we develop a novel methodology for assessing the service impact of any hypothetical cellular tower outage scenario, and implement it in an operational system named Tower Outage Impact Predictor (TOIP). Our evaluations, using both synthetic data and historical real tower outages in a large operational cellular network, show conclusively that TOIP gives an accurate assessment of various tower outage scenarios, and can provide critical input data towards designing a reliable cellular backhaul transport network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Networking Asymptotically Optimal Load Balancing Topologies On Resource Pooling and Separation for LRU Caching Working Set Size Estimation Techniques in Virtualized Environments: One Size Does not Fit All PreFix: Switch Failure Prediction in Datacenter Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1