数据汇总与分布式计算

Graham Cormode
{"title":"数据汇总与分布式计算","authors":"Graham Cormode","doi":"10.1145/3212734.3212795","DOIUrl":null,"url":null,"abstract":"The notion of summarization is to provide a compact representation of data which approximately captures its essential characteristics. If such summaries can be created, they can lead to efficient distributed algorithms which exchange summaries in order to compute a desired function. In this talk, I'll describe recent efforts in this direction for problems inspired by machine learning: building graphical models over evolving, distributed training examples, and solving robust regression problems over large, distributed data sets.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Summarization and Distributed Computation\",\"authors\":\"Graham Cormode\",\"doi\":\"10.1145/3212734.3212795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of summarization is to provide a compact representation of data which approximately captures its essential characteristics. If such summaries can be created, they can lead to efficient distributed algorithms which exchange summaries in order to compute a desired function. In this talk, I'll describe recent efforts in this direction for problems inspired by machine learning: building graphical models over evolving, distributed training examples, and solving robust regression problems over large, distributed data sets.\",\"PeriodicalId\":198284,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212734.3212795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要的概念是提供数据的紧凑表示,以近似地捕捉其基本特征。如果可以创建这样的摘要,它们可以导致高效的分布式算法,这些算法交换摘要以计算所需的函数。在这次演讲中,我将描述最近在这个方向上的努力,以解决由机器学习启发的问题:在不断发展的分布式训练示例上构建图形模型,以及在大型分布式数据集上解决鲁棒回归问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Summarization and Distributed Computation
The notion of summarization is to provide a compact representation of data which approximately captures its essential characteristics. If such summaries can be created, they can lead to efficient distributed algorithms which exchange summaries in order to compute a desired function. In this talk, I'll describe recent efforts in this direction for problems inspired by machine learning: building graphical models over evolving, distributed training examples, and solving robust regression problems over large, distributed data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tutorial: Consistency Choices in Modern Distributed Systems Locking Timestamps versus Locking Objects Recoverable Mutual Exclusion Under System-Wide Failures Nesting-Safe Recoverable Linearizability: Modular Constructions for Non-Volatile Memory Brief Announcement: Beeping a Time-Optimal Leader Election
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1