{"title":"拉格朗日-欧拉法与欧拉-欧拉法在点阵玻尔兹曼方法下粒子自由表面流动的比较","authors":"J. Vimmr, O. Bublík, V. Heidler","doi":"10.23967/WCCM-ECCOMAS.2020.091","DOIUrl":null,"url":null,"abstract":"The aim of this study is a comparison of Lagrangian-Eulerian and Eulerian-Eulerian numerical approach for the simulation of fluid-particles interaction. Within the study the immersed particles are restricted to have spherical shapes and are equal or smaller than the resolution of the computational mesh. The interaction between fluid and particles is performed using the immersed boundary method and the free surface flow of an incompressible fluid is simulated using the lattice Boltzmann method. Both approaches are compared within two test problems. Firstly, the swarm of particles falling in the fluid, and secondly, casting of the fluid with dispersed particles into a mold. Both tests showed good qualitative and quantitative agreement of mentioned approaches.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Lagrangian-Eulerian and Eulerian-Eulerian Approaches for Particle Laden Free Surface Flow by Means of Lattice Boltzmann Method\",\"authors\":\"J. Vimmr, O. Bublík, V. Heidler\",\"doi\":\"10.23967/WCCM-ECCOMAS.2020.091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is a comparison of Lagrangian-Eulerian and Eulerian-Eulerian numerical approach for the simulation of fluid-particles interaction. Within the study the immersed particles are restricted to have spherical shapes and are equal or smaller than the resolution of the computational mesh. The interaction between fluid and particles is performed using the immersed boundary method and the free surface flow of an incompressible fluid is simulated using the lattice Boltzmann method. Both approaches are compared within two test problems. Firstly, the swarm of particles falling in the fluid, and secondly, casting of the fluid with dispersed particles into a mold. Both tests showed good qualitative and quantitative agreement of mentioned approaches.\",\"PeriodicalId\":148883,\"journal\":{\"name\":\"14th WCCM-ECCOMAS Congress\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th WCCM-ECCOMAS Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/WCCM-ECCOMAS.2020.091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Lagrangian-Eulerian and Eulerian-Eulerian Approaches for Particle Laden Free Surface Flow by Means of Lattice Boltzmann Method
The aim of this study is a comparison of Lagrangian-Eulerian and Eulerian-Eulerian numerical approach for the simulation of fluid-particles interaction. Within the study the immersed particles are restricted to have spherical shapes and are equal or smaller than the resolution of the computational mesh. The interaction between fluid and particles is performed using the immersed boundary method and the free surface flow of an incompressible fluid is simulated using the lattice Boltzmann method. Both approaches are compared within two test problems. Firstly, the swarm of particles falling in the fluid, and secondly, casting of the fluid with dispersed particles into a mold. Both tests showed good qualitative and quantitative agreement of mentioned approaches.