MReC4.5: C4.5集成分类与MapReduce

Gongqing Wu, Hai-Guang Li, Xuegang Hu, Yuan-Jun Bi, J. Zhang, Xindong Wu
{"title":"MReC4.5: C4.5集成分类与MapReduce","authors":"Gongqing Wu, Hai-Guang Li, Xuegang Hu, Yuan-Jun Bi, J. Zhang, Xindong Wu","doi":"10.1109/ChinaGrid.2009.39","DOIUrl":null,"url":null,"abstract":"Classification is a significant technique in data mining research and applications. C4.5 is a widely used classification method, and ensemble learning adopts a parallel and distributed computing model for classification. Based on analyses of the MapReduce computing paradigm and the process of ensemble learning, we find that the parallel and distributed computing model in MapReduce is appropriate for implementing ensemble learning. This paper takes the advantages of C4.5, ensemble learning and the MapReduce computing model, and proposes a new method MReC4.5 for parallel and distributed ensemble classification. Our experimental results show that increasing the number of nodes would benefit the effectiveness of classification modeling, and serialization operations at the model level make the MReC4.5 classifier “construct once, use anywhere”.","PeriodicalId":212445,"journal":{"name":"2009 Fourth ChinaGrid Annual Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"MReC4.5: C4.5 Ensemble Classification with MapReduce\",\"authors\":\"Gongqing Wu, Hai-Guang Li, Xuegang Hu, Yuan-Jun Bi, J. Zhang, Xindong Wu\",\"doi\":\"10.1109/ChinaGrid.2009.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is a significant technique in data mining research and applications. C4.5 is a widely used classification method, and ensemble learning adopts a parallel and distributed computing model for classification. Based on analyses of the MapReduce computing paradigm and the process of ensemble learning, we find that the parallel and distributed computing model in MapReduce is appropriate for implementing ensemble learning. This paper takes the advantages of C4.5, ensemble learning and the MapReduce computing model, and proposes a new method MReC4.5 for parallel and distributed ensemble classification. Our experimental results show that increasing the number of nodes would benefit the effectiveness of classification modeling, and serialization operations at the model level make the MReC4.5 classifier “construct once, use anywhere”.\",\"PeriodicalId\":212445,\"journal\":{\"name\":\"2009 Fourth ChinaGrid Annual Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth ChinaGrid Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaGrid.2009.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

分类是数据挖掘研究和应用中的一项重要技术。C4.5是一种广泛使用的分类方法,集成学习采用并行分布式计算模型进行分类。通过对MapReduce计算范式和集成学习过程的分析,发现MapReduce中的并行和分布式计算模型适合集成学习的实现。本文利用C4.5、集成学习和MapReduce计算模型的优势,提出了一种并行分布式集成分类的新方法MReC4.5。实验结果表明,增加节点数量有利于分类建模的有效性,模型层面的序列化操作使得MReC4.5分类器“构造一次,随处使用”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MReC4.5: C4.5 Ensemble Classification with MapReduce
Classification is a significant technique in data mining research and applications. C4.5 is a widely used classification method, and ensemble learning adopts a parallel and distributed computing model for classification. Based on analyses of the MapReduce computing paradigm and the process of ensemble learning, we find that the parallel and distributed computing model in MapReduce is appropriate for implementing ensemble learning. This paper takes the advantages of C4.5, ensemble learning and the MapReduce computing model, and proposes a new method MReC4.5 for parallel and distributed ensemble classification. Our experimental results show that increasing the number of nodes would benefit the effectiveness of classification modeling, and serialization operations at the model level make the MReC4.5 classifier “construct once, use anywhere”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Reliable Parallel Interval Global Optimization Algorithm Based on Mind Evolutionary Computation Adaptively Construct Banking Process with Tags Upon Services-Oriented Grid Distributed Metadata Management Based on Hierarchical Bloom Filters in Data Grid Research of Ontology Modeling in Structure Engineering Grid Achievement for Complicated Electromagnetic Environment Simulation Application Based on ChinaGrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1