{"title":"用于软件定义安全性的可伸缩流规则转换实现","authors":"Hao Tu, Weiming Li, Dong Li, Junqing Yu","doi":"10.1109/APNOMS.2014.6996571","DOIUrl":null,"url":null,"abstract":"Software defined networking brings many possibilities to network security, one of the most important security challenge it can help with is the possibility to make network traffic pass through specific security devices, in other words, determine where to deploy these devices logically. However, most researches focus on high level policy and interaction framework but ignored how to translate them to low-level OpenFlow rules with scalability. We analyze different actions used in common security scenarios and resource constraints of physical switch. Based on them, we propose a rule translation implementation which can optimize the resource consumption according to different actions by selecting forward path dynamically.","PeriodicalId":269952,"journal":{"name":"The 16th Asia-Pacific Network Operations and Management Symposium","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A scalable flow rule translation implementation for software defined security\",\"authors\":\"Hao Tu, Weiming Li, Dong Li, Junqing Yu\",\"doi\":\"10.1109/APNOMS.2014.6996571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software defined networking brings many possibilities to network security, one of the most important security challenge it can help with is the possibility to make network traffic pass through specific security devices, in other words, determine where to deploy these devices logically. However, most researches focus on high level policy and interaction framework but ignored how to translate them to low-level OpenFlow rules with scalability. We analyze different actions used in common security scenarios and resource constraints of physical switch. Based on them, we propose a rule translation implementation which can optimize the resource consumption according to different actions by selecting forward path dynamically.\",\"PeriodicalId\":269952,\"journal\":{\"name\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APNOMS.2014.6996571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 16th Asia-Pacific Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APNOMS.2014.6996571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A scalable flow rule translation implementation for software defined security
Software defined networking brings many possibilities to network security, one of the most important security challenge it can help with is the possibility to make network traffic pass through specific security devices, in other words, determine where to deploy these devices logically. However, most researches focus on high level policy and interaction framework but ignored how to translate them to low-level OpenFlow rules with scalability. We analyze different actions used in common security scenarios and resource constraints of physical switch. Based on them, we propose a rule translation implementation which can optimize the resource consumption according to different actions by selecting forward path dynamically.