A. Boldarev, V. Gasilov, F. Blasco, F. Dorchies, C. Stenz
{"title":"飞秒激光靶簇结构的实验与数值研究","authors":"A. Boldarev, V. Gasilov, F. Blasco, F. Dorchies, C. Stenz","doi":"10.1117/12.543122","DOIUrl":null,"url":null,"abstract":"A mathematical model of clusters forming in gas jets is proposed. This model concerns with the representation of the clusters by the moments of the distribution function of the clusters with respect to the radius. This model uses the kinetic theory of phase transitions presented by Frenkel for the kinetic of the clusters formation. The numerical results obtained with the help of this model are compared with the direct experimental measurements based on Mach-Zehnder interferometry and Rayleigh scattering.","PeriodicalId":340981,"journal":{"name":"European Conference on Laser Interaction with Matter","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental and numerical studies of the structure of cluster targets for femtosecond laser pulses\",\"authors\":\"A. Boldarev, V. Gasilov, F. Blasco, F. Dorchies, C. Stenz\",\"doi\":\"10.1117/12.543122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model of clusters forming in gas jets is proposed. This model concerns with the representation of the clusters by the moments of the distribution function of the clusters with respect to the radius. This model uses the kinetic theory of phase transitions presented by Frenkel for the kinetic of the clusters formation. The numerical results obtained with the help of this model are compared with the direct experimental measurements based on Mach-Zehnder interferometry and Rayleigh scattering.\",\"PeriodicalId\":340981,\"journal\":{\"name\":\"European Conference on Laser Interaction with Matter\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Laser Interaction with Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.543122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Laser Interaction with Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.543122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and numerical studies of the structure of cluster targets for femtosecond laser pulses
A mathematical model of clusters forming in gas jets is proposed. This model concerns with the representation of the clusters by the moments of the distribution function of the clusters with respect to the radius. This model uses the kinetic theory of phase transitions presented by Frenkel for the kinetic of the clusters formation. The numerical results obtained with the help of this model are compared with the direct experimental measurements based on Mach-Zehnder interferometry and Rayleigh scattering.