欠分散计数数据的经验模型

M. Ridout, P. Besbeas
{"title":"欠分散计数数据的经验模型","authors":"M. Ridout, P. Besbeas","doi":"10.1191/1471082X04st064oa","DOIUrl":null,"url":null,"abstract":"We present a novel distribution for modelling count data that are underdispersed relative to the Poisson distribution. The distribution is a form of weighted Poisson distribution and is shown to have advantages over other weighted Poisson distributions that have been proposed to model underdispersion. One key difference is that the weights in our distribution are centred on the mean of the underlying Poisson distribution. Several illustrative examples are presented that illustrate the consistently good performance of the distribution.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"An empirical model for underdispersed count data\",\"authors\":\"M. Ridout, P. Besbeas\",\"doi\":\"10.1191/1471082X04st064oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel distribution for modelling count data that are underdispersed relative to the Poisson distribution. The distribution is a form of weighted Poisson distribution and is shown to have advantages over other weighted Poisson distributions that have been proposed to model underdispersion. One key difference is that the weights in our distribution are centred on the mean of the underlying Poisson distribution. Several illustrative examples are presented that illustrate the consistently good performance of the distribution.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X04st064oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st064oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

我们提出了一种新的分布,用于模拟相对于泊松分布的欠分散计数数据。该分布是加权泊松分布的一种形式,与其他提出的用于模拟欠分散的加权泊松分布相比,该分布具有优势。一个关键的区别是,我们的分布中的权重集中在潜在泊松分布的平均值上。给出了几个示例,说明了该分布始终具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An empirical model for underdispersed count data
We present a novel distribution for modelling count data that are underdispersed relative to the Poisson distribution. The distribution is a form of weighted Poisson distribution and is shown to have advantages over other weighted Poisson distributions that have been proposed to model underdispersion. One key difference is that the weights in our distribution are centred on the mean of the underlying Poisson distribution. Several illustrative examples are presented that illustrate the consistently good performance of the distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1