自动调优非阻塞集体通信操作

Youcef Barigou, V. Venkatesan, E. Gabriel
{"title":"自动调优非阻塞集体通信操作","authors":"Youcef Barigou, V. Venkatesan, E. Gabriel","doi":"10.1109/IPDPSW.2015.15","DOIUrl":null,"url":null,"abstract":"Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Auto-tuning Non-blocking Collective Communication Operations\",\"authors\":\"Youcef Barigou, V. Venkatesan, E. Gabriel\",\"doi\":\"10.1109/IPDPSW.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

集合操作广泛用于大规模科学应用程序中,并且对于这些应用程序的大型过程计数的可伸缩性至关重要。还证明了必须针对给定的平台和应用程序场景仔细调整集合操作,以最大化其性能。非阻塞集体操作通过提供能够重叠通信和计算的额外好处,扩展了集体操作的概念。本文提出了非阻塞集体通信操作的自动运行时调优,它允许通信库根据具体情况为非阻塞集体操作选择性能最佳的实现。本文论证了使用单一算法或实现进行非阻塞集体操作的库在许多情况下将不可避免地导致次优性能,从而验证了对这些操作进行运行时调优的必要性。利用多维快速傅里叶变换进一步证明了该方法的优点。在应用场景中获得的结果表明,与现有技术相比,性能提高了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Auto-tuning Non-blocking Collective Communication Operations
Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1