{"title":"网络物理系统隐蔽通道攻击的基于网络的机器学习检测","authors":"Hongwei Li, D. Chasaki","doi":"10.1109/INDIN51773.2022.9976152","DOIUrl":null,"url":null,"abstract":"Most of the recent high-profile attacks targeting cyber-physical systems (CPS) started with lengthy reconnaissance periods that enabled attackers to gain in-depth understanding of the victim’s environment. To simulate these stealthy attacks, several covert channel tools have been published and proven effective in their ability to blend into existing CPS communication streams and have the capability for data exfiltration and command injection.In this paper, we report a novel machine learning feature engineering and data processing pipeline for the detection of covert channel attacks on CPS systems with real-time detection throughput. The system also operates at the network layer without requiring physical system domain-specific state modeling, such as voltage levels in a power generation system. We not only demonstrate the effectiveness of using TCP payload entropy as engineered features and the technique of grouping information into network flows, but also pitch the proposed detector against scenarios employing advanced evasion tactics, and still achieve above 99% detection performance.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network-Based Machine Learning Detection of Covert Channel Attacks on Cyber-Physical Systems\",\"authors\":\"Hongwei Li, D. Chasaki\",\"doi\":\"10.1109/INDIN51773.2022.9976152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the recent high-profile attacks targeting cyber-physical systems (CPS) started with lengthy reconnaissance periods that enabled attackers to gain in-depth understanding of the victim’s environment. To simulate these stealthy attacks, several covert channel tools have been published and proven effective in their ability to blend into existing CPS communication streams and have the capability for data exfiltration and command injection.In this paper, we report a novel machine learning feature engineering and data processing pipeline for the detection of covert channel attacks on CPS systems with real-time detection throughput. The system also operates at the network layer without requiring physical system domain-specific state modeling, such as voltage levels in a power generation system. We not only demonstrate the effectiveness of using TCP payload entropy as engineered features and the technique of grouping information into network flows, but also pitch the proposed detector against scenarios employing advanced evasion tactics, and still achieve above 99% detection performance.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network-Based Machine Learning Detection of Covert Channel Attacks on Cyber-Physical Systems
Most of the recent high-profile attacks targeting cyber-physical systems (CPS) started with lengthy reconnaissance periods that enabled attackers to gain in-depth understanding of the victim’s environment. To simulate these stealthy attacks, several covert channel tools have been published and proven effective in their ability to blend into existing CPS communication streams and have the capability for data exfiltration and command injection.In this paper, we report a novel machine learning feature engineering and data processing pipeline for the detection of covert channel attacks on CPS systems with real-time detection throughput. The system also operates at the network layer without requiring physical system domain-specific state modeling, such as voltage levels in a power generation system. We not only demonstrate the effectiveness of using TCP payload entropy as engineered features and the technique of grouping information into network flows, but also pitch the proposed detector against scenarios employing advanced evasion tactics, and still achieve above 99% detection performance.