基于信念函数融合的不完全模式分类

Zhunga Liu, Q. Pan, J. Dezert, Arnaud Martin, G. Mercier
{"title":"基于信念函数融合的不完全模式分类","authors":"Zhunga Liu, Q. Pan, J. Dezert, Arnaud Martin, G. Mercier","doi":"10.5281/ZENODO.23204","DOIUrl":null,"url":null,"abstract":"The influence of the missing values in the classification of incomplete pattern mainly depends on the context. In this paper, we present a fast classification method for incomplete pattern based on the fusion of belief functions where the missing values are selectively (adaptively) estimated. At first, it is assumed that the missing information is not crucial for the classification, and the object (incomplete pattern) is classified based only on the available attribute values. However, if the object cannot be clearly classified, it implies that the missing values play an important role to obtain an accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with the imputation is then classified. The (original or edited) pattern is respectively classified according to each training class, and the classification results represented by basic belief assignments (BBA's) are fused with proper combination rules for making the credal classification. The object is allowed to belong with different masses of belief to the specific classes and meta-classes (i.e. disjunctions of several single classes). This credal classification captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical methods is demonstrated based on several experiments using artificial and real data sets.","PeriodicalId":297288,"journal":{"name":"2015 18th International Conference on Information Fusion (Fusion)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of incomplete patterns based on the fusion of belief functions\",\"authors\":\"Zhunga Liu, Q. Pan, J. Dezert, Arnaud Martin, G. Mercier\",\"doi\":\"10.5281/ZENODO.23204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of the missing values in the classification of incomplete pattern mainly depends on the context. In this paper, we present a fast classification method for incomplete pattern based on the fusion of belief functions where the missing values are selectively (adaptively) estimated. At first, it is assumed that the missing information is not crucial for the classification, and the object (incomplete pattern) is classified based only on the available attribute values. However, if the object cannot be clearly classified, it implies that the missing values play an important role to obtain an accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with the imputation is then classified. The (original or edited) pattern is respectively classified according to each training class, and the classification results represented by basic belief assignments (BBA's) are fused with proper combination rules for making the credal classification. The object is allowed to belong with different masses of belief to the specific classes and meta-classes (i.e. disjunctions of several single classes). This credal classification captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical methods is demonstrated based on several experiments using artificial and real data sets.\",\"PeriodicalId\":297288,\"journal\":{\"name\":\"2015 18th International Conference on Information Fusion (Fusion)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 18th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.23204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 18th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.23204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

缺失值对不完整模式分类的影响主要取决于上下文。本文提出了一种基于信念函数融合的不完全模式快速分类方法,该方法对缺失值进行选择性(自适应)估计。首先,假设缺失的信息对分类不重要,并且仅根据可用的属性值对对象(不完整模式)进行分类。然而,如果对象不能被清晰地分类,这意味着缺失值对获得准确的分类起着重要作用。在这种情况下,缺失值将基于k -近邻(K-NN)和自组织映射(SOM)技术进行输入,然后使用输入对编辑后的模式进行分类。将(原始的或编辑的)模式分别根据每个训练类别进行分类,并将基本信念赋值(BBA)表示的分类结果与适当的组合规则融合,进行凭证分类。对象被允许以不同的信念属于特定的类和元类(即几个单一类的分离)。这种凭证分类很好地抓住了分类的不确定性和不精确性,并且由于引入了元类,有效地降低了错误分类的率。通过人工数据集和真实数据集的实验,证明了该方法相对于其他经典方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of incomplete patterns based on the fusion of belief functions
The influence of the missing values in the classification of incomplete pattern mainly depends on the context. In this paper, we present a fast classification method for incomplete pattern based on the fusion of belief functions where the missing values are selectively (adaptively) estimated. At first, it is assumed that the missing information is not crucial for the classification, and the object (incomplete pattern) is classified based only on the available attribute values. However, if the object cannot be clearly classified, it implies that the missing values play an important role to obtain an accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with the imputation is then classified. The (original or edited) pattern is respectively classified according to each training class, and the classification results represented by basic belief assignments (BBA's) are fused with proper combination rules for making the credal classification. The object is allowed to belong with different masses of belief to the specific classes and meta-classes (i.e. disjunctions of several single classes). This credal classification captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical methods is demonstrated based on several experiments using artificial and real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information fusion with topological event spaces A graph-based evidence theory for assessing risk A real Z-box experiment for testing Zadeh's example On the quality estimation of optimal multiple criteria data association solutions Generic object recognition based on the fusion of 2D and 3D SIFT descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1