图像和视频编码的跨分量样本偏移

Yixin Du, Xin Zhao, Shanchun Liu
{"title":"图像和视频编码的跨分量样本偏移","authors":"Yixin Du, Xin Zhao, Shanchun Liu","doi":"10.1109/VCIP53242.2021.9675355","DOIUrl":null,"url":null,"abstract":"Existing cross-component video coding technologies have shown great potential on improving coding efficiency. The fundamental insight of cross-component coding technology is respecting the statistical correlations among different color components. In this paper, a Cross-Component Sample Offset (CCSO) approach for image and video coding is proposed inspired by the observation that, luma component tends to contain more texture, while chroma component is relatively smoother. The key component of CCSO is a non-linear offset mapping mechanism implemented as a look-up-table (LUT). The input of the mapping is the co-located reconstructed samples of luma component, and the output is offset values applied on chroma component. The proposed method has been implemented on top of a recent version of libaom. Experimental results show that the proposed approach brings 1.16% Random Access (RA) BD-rate saving on top of AV1 with marginal encoding/decoding time increase.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cross-Component Sample Offset for Image and Video Coding\",\"authors\":\"Yixin Du, Xin Zhao, Shanchun Liu\",\"doi\":\"10.1109/VCIP53242.2021.9675355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing cross-component video coding technologies have shown great potential on improving coding efficiency. The fundamental insight of cross-component coding technology is respecting the statistical correlations among different color components. In this paper, a Cross-Component Sample Offset (CCSO) approach for image and video coding is proposed inspired by the observation that, luma component tends to contain more texture, while chroma component is relatively smoother. The key component of CCSO is a non-linear offset mapping mechanism implemented as a look-up-table (LUT). The input of the mapping is the co-located reconstructed samples of luma component, and the output is offset values applied on chroma component. The proposed method has been implemented on top of a recent version of libaom. Experimental results show that the proposed approach brings 1.16% Random Access (RA) BD-rate saving on top of AV1 with marginal encoding/decoding time increase.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的跨分量视频编码技术在提高编码效率方面显示出巨大的潜力。跨分量编码技术的基本思想是尊重不同颜色分量之间的统计相关性。本文根据亮度分量往往包含较多的纹理,而色度分量相对光滑的特点,提出了一种用于图像和视频编码的跨分量样本偏移(Cross-Component Sample Offset, CCSO)方法。CCSO的关键组件是一个非线性偏移映射机制,实现为一个查找表(LUT)。映射的输入是亮度分量的共定位重构样本,输出是色度分量上的偏移值。所提出的方法已经在libaom的最新版本上实现。实验结果表明,该方法在AV1的基础上可节省1.16%的随机存取(RA) bd率,且编解码时间边际增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Component Sample Offset for Image and Video Coding
Existing cross-component video coding technologies have shown great potential on improving coding efficiency. The fundamental insight of cross-component coding technology is respecting the statistical correlations among different color components. In this paper, a Cross-Component Sample Offset (CCSO) approach for image and video coding is proposed inspired by the observation that, luma component tends to contain more texture, while chroma component is relatively smoother. The key component of CCSO is a non-linear offset mapping mechanism implemented as a look-up-table (LUT). The input of the mapping is the co-located reconstructed samples of luma component, and the output is offset values applied on chroma component. The proposed method has been implemented on top of a recent version of libaom. Experimental results show that the proposed approach brings 1.16% Random Access (RA) BD-rate saving on top of AV1 with marginal encoding/decoding time increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1