粗粒度可重构体系结构指令码的自适应压缩

Moo-Kyoung Chung, Jun-Kyoung Kim, Yeon-Gon Cho, Soojung Ryu
{"title":"粗粒度可重构体系结构指令码的自适应压缩","authors":"Moo-Kyoung Chung, Jun-Kyoung Kim, Yeon-Gon Cho, Soojung Ryu","doi":"10.1109/FPT.2013.6718396","DOIUrl":null,"url":null,"abstract":"Coarse Grained Reconfigurable Architecture (CGRA) achieves high performance by exploiting instruction-level parallelism with software pipeline. Large instruction memory is, however, a critical problem of CGRA, which requires large silicon area and power consumption. Code compression is a promising technique to reduce the memory area, bandwidth requirements, and power consumption. We present an adaptive code compression scheme for CGRA instructions based on dictionary-based compression, where compression mode and dictionary contents are adaptively selected for each execution kernel and compression group. In addition, it is able to design hardware decompressor efficiently with two-cycle latency and negligible silicon overhead. The proposed method achieved an average compression ratio 0.52 in a CGRA of 16-functional unit array with the experiments of well-optimized applications.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive compression for instruction code of Coarse Grained Reconfigurable Architectures\",\"authors\":\"Moo-Kyoung Chung, Jun-Kyoung Kim, Yeon-Gon Cho, Soojung Ryu\",\"doi\":\"10.1109/FPT.2013.6718396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coarse Grained Reconfigurable Architecture (CGRA) achieves high performance by exploiting instruction-level parallelism with software pipeline. Large instruction memory is, however, a critical problem of CGRA, which requires large silicon area and power consumption. Code compression is a promising technique to reduce the memory area, bandwidth requirements, and power consumption. We present an adaptive code compression scheme for CGRA instructions based on dictionary-based compression, where compression mode and dictionary contents are adaptively selected for each execution kernel and compression group. In addition, it is able to design hardware decompressor efficiently with two-cycle latency and negligible silicon overhead. The proposed method achieved an average compression ratio 0.52 in a CGRA of 16-functional unit array with the experiments of well-optimized applications.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

粗粒度可重构体系结构(CGRA)通过利用软件管道的指令级并行性来实现高性能。然而,大指令存储器是CGRA的一个关键问题,它需要大的硅面积和功耗。代码压缩是一种很有前途的技术,可以减少内存面积、带宽需求和功耗。本文提出了一种基于字典的CGRA指令自适应代码压缩方案,该方案为每个执行内核和压缩组自适应地选择压缩模式和字典内容。此外,它能够有效地设计硬件解压缩器,具有两周期延迟和可忽略不计的硅开销。该方法在16个功能单元阵列的CGRA中实现了平均压缩比0.52,并进行了优化应用实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive compression for instruction code of Coarse Grained Reconfigurable Architectures
Coarse Grained Reconfigurable Architecture (CGRA) achieves high performance by exploiting instruction-level parallelism with software pipeline. Large instruction memory is, however, a critical problem of CGRA, which requires large silicon area and power consumption. Code compression is a promising technique to reduce the memory area, bandwidth requirements, and power consumption. We present an adaptive code compression scheme for CGRA instructions based on dictionary-based compression, where compression mode and dictionary contents are adaptively selected for each execution kernel and compression group. In addition, it is able to design hardware decompressor efficiently with two-cycle latency and negligible silicon overhead. The proposed method achieved an average compression ratio 0.52 in a CGRA of 16-functional unit array with the experiments of well-optimized applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and optimization of heterogeneous tree-based FPGA using 3D technology Mobile GPU shader processor based on non-blocking Coarse Grained Reconfigurable Arrays architecture An FPGA-cluster-accelerated match engine for content-based image retrieval A non-intrusive portable fault injection framework to assess reliability of FPGA-based designs Quantum FPGA architecture design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1