{"title":"挖掘异常应用程序","authors":"A. Zeller","doi":"10.1145/2975961.2990476","DOIUrl":null,"url":null,"abstract":"When interacting with mobile apps, do users always get what they expect? We have mined thousands of Android apps for common features such as descriptions, APIs used, data flows, and (recently) user interfaces and callbacks. Associating these with each other allows us to detect outliers: Apps whose description does not fit their behavior; apps whose sensitive data flow is usual; and user interface elements whose text or icon suggests one action, but which actually are tied to other actions. Such anomalies not only reveal bugs, but actual security issues – and there is a huge treasure trove worth of data to be mined, abstracted, and analyzed.","PeriodicalId":106703,"journal":{"name":"Proceedings of the 5th International Workshop on Software Mining","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mining apps for anomalies\",\"authors\":\"A. Zeller\",\"doi\":\"10.1145/2975961.2990476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When interacting with mobile apps, do users always get what they expect? We have mined thousands of Android apps for common features such as descriptions, APIs used, data flows, and (recently) user interfaces and callbacks. Associating these with each other allows us to detect outliers: Apps whose description does not fit their behavior; apps whose sensitive data flow is usual; and user interface elements whose text or icon suggests one action, but which actually are tied to other actions. Such anomalies not only reveal bugs, but actual security issues – and there is a huge treasure trove worth of data to be mined, abstracted, and analyzed.\",\"PeriodicalId\":106703,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on Software Mining\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on Software Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2975961.2990476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Software Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2975961.2990476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当用户与移动应用程序交互时,他们是否总能得到他们所期望的?我们挖掘了数千个Android应用程序的常见功能,如描述、使用的api、数据流,以及(最近的)用户界面和回调。将它们相互关联可以让我们检测到异常值:描述不符合其行为的应用程序;敏感数据流正常的应用程序;以及用户界面元素,其文本或图标提示一个操作,但实际上与其他操作相关联。这样的异常不仅暴露了错误,而且还暴露了实际的安全问题——并且有一个巨大的数据宝库需要挖掘、抽象和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining apps for anomalies
When interacting with mobile apps, do users always get what they expect? We have mined thousands of Android apps for common features such as descriptions, APIs used, data flows, and (recently) user interfaces and callbacks. Associating these with each other allows us to detect outliers: Apps whose description does not fit their behavior; apps whose sensitive data flow is usual; and user interface elements whose text or icon suggests one action, but which actually are tied to other actions. Such anomalies not only reveal bugs, but actual security issues – and there is a huge treasure trove worth of data to be mined, abstracted, and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic prediction of bug fixing effort measured by code churn size Duplicate issue detection for the Android open source project On the feasibility of detecting cross-platform code clones via identifier similarity Mining testing questions on stack overflow Code migration with statistical machine translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1