近似矩阵乘法的快速蒙特卡罗算法

P. Drineas, R. Kannan
{"title":"近似矩阵乘法的快速蒙特卡罗算法","authors":"P. Drineas, R. Kannan","doi":"10.1109/SFCS.2001.959921","DOIUrl":null,"url":null,"abstract":"Given an m ? n matrix A and an n ? p matrix B, we present 2 simple and intuitive algorithms to compute an approximation P to the product A ? B, with provable bounds for the norm of the \"error matrix\" P - A ? B. Both algorithms run in 0(mp+mn+np) time. In both algorithms, we randomly pick s = 0(1) columns of A to form an m ? s matrix S and the corresponding rows of B to form an s ? p matrix R. After scaling the columns of S and the rows of R, we multiply them together to obtain our approximation P. The choice of the probability distribution we use for picking the columns of A and the scaling are the crucial features which enable us to fairly elementary proofs of the error bounds. Our first algorithm can be implemented without storing the matrices A and B in Random Access Memory, provided we can make two passes through the matrices (stored in external memory). The second algorithm has a smaller bound on the 2-norm of the error matrix, but requires storage of A and B in RAM. We also present a fast algorithm that \"describes\" P as a sum of rank one matrices if B = AT.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"421 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Fast Monte-Carlo algorithms for approximate matrix multiplication\",\"authors\":\"P. Drineas, R. Kannan\",\"doi\":\"10.1109/SFCS.2001.959921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an m ? n matrix A and an n ? p matrix B, we present 2 simple and intuitive algorithms to compute an approximation P to the product A ? B, with provable bounds for the norm of the \\\"error matrix\\\" P - A ? B. Both algorithms run in 0(mp+mn+np) time. In both algorithms, we randomly pick s = 0(1) columns of A to form an m ? s matrix S and the corresponding rows of B to form an s ? p matrix R. After scaling the columns of S and the rows of R, we multiply them together to obtain our approximation P. The choice of the probability distribution we use for picking the columns of A and the scaling are the crucial features which enable us to fairly elementary proofs of the error bounds. Our first algorithm can be implemented without storing the matrices A and B in Random Access Memory, provided we can make two passes through the matrices (stored in external memory). The second algorithm has a smaller bound on the 2-norm of the error matrix, but requires storage of A and B in RAM. We also present a fast algorithm that \\\"describes\\\" P as a sum of rank one matrices if B = AT.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"421 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

给定一个m ?n矩阵A和n ?p矩阵B,我们提出了两种简单直观的算法来计算乘积A ?B,“误差矩阵”P - A的范数的可证明界?B.两种算法的运行时间都是0(mp+mn+np)。在这两种算法中,我们随机选择A的s = 0(1)列来组成一个m ?s矩阵s和B的相应行组成s ?p矩阵R,在对S的列和R的行进行缩放后,我们将它们乘在一起以获得近似p。我们用来选择A的列和缩放的概率分布的选择是使我们能够相当初级地证明误差界限的关键特征。我们的第一个算法可以在不将矩阵A和B存储在随机存取存储器中的情况下实现,前提是我们可以两次遍历矩阵(存储在外部存储器中)。第二种算法在误差矩阵的2范数上有一个较小的界限,但需要在RAM中存储a和B。我们还提出了一个快速算法,该算法将P“描述”为B = AT时的秩一矩阵的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Monte-Carlo algorithms for approximate matrix multiplication
Given an m ? n matrix A and an n ? p matrix B, we present 2 simple and intuitive algorithms to compute an approximation P to the product A ? B, with provable bounds for the norm of the "error matrix" P - A ? B. Both algorithms run in 0(mp+mn+np) time. In both algorithms, we randomly pick s = 0(1) columns of A to form an m ? s matrix S and the corresponding rows of B to form an s ? p matrix R. After scaling the columns of S and the rows of R, we multiply them together to obtain our approximation P. The choice of the probability distribution we use for picking the columns of A and the scaling are the crucial features which enable us to fairly elementary proofs of the error bounds. Our first algorithm can be implemented without storing the matrices A and B in Random Access Memory, provided we can make two passes through the matrices (stored in external memory). The second algorithm has a smaller bound on the 2-norm of the error matrix, but requires storage of A and B in RAM. We also present a fast algorithm that "describes" P as a sum of rank one matrices if B = AT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The complexity of factors of multivariate polynomials A replacement for Voronoi diagrams of near linear size "Planar" tautologies hard for resolution Traveling with a Pez dispenser (or, routing issues in MPLS) Almost tight upper bounds for vertical decompositions in four dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1